查文庫>總結> 高二數學水平考知識點總結

高二數學水平考知識點總結

高二數學水平考知識點總結

  總結就是把一個時段的學習、工作或其完成情況進行一次全面系統的總結,透過它可以正確認識以往學習和工作中的優缺點,因此我們要做好歸納,寫好總結。那麼你知道總結如何寫嗎?以下是小編收集整理的高二數學水平考知識點總結,僅供參考,希望能夠幫助到大家。

  高二數學水平考知識點總結 篇1

  複數定義

  我們把形如a+bi(a,b均為實數)的數稱為複數,其中a稱為實部,b稱為虛部,i稱為虛數單位。當虛部等於零時,這個複數可以視為實數;當z的虛部不等於零時,實部等於零時,常稱z為純虛數。複數域是實數域的代數閉包,也即任何復係數多項式在複數域中總有根。

  複數表示式

  虛數是與任何事物沒有聯絡的,是絕對的,所以符合的表示式為:

  a=a+ia為實部,i為虛部

  複數運演算法則

  加法法則:(a+bi)+(c+di)=(a+c)+(b+d)i;

  減法法則:(a+bi)-(c+di)=(a-c)+(b-d)i;

  乘法法則:(a+bi)·(c+di)=(ac-bd)+(bc+ad)i;

  除法法則:(a+bi)/(c+di)=[(ac+bd)/(c2+d2)]+[(bc-ad)/(c2+d2)]i.

  例如:[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=0,最終結果還是0,也就在數字中沒有複數的存在。[(a+bi)+(c+di)]-[(a+c)+(b+d)i]=z是一個函式。

  複數與幾何

  ①幾何形式

  複數z=a+bi被複平面上的點z(a,b)確定。這種形式使複數的問題可以藉助圖形來研究。也可反過來用複數的理論解決一些幾何問題。

  ②向量形式

  複數z=a+bi用一個以原點O(0,0)為起點,點Z(a,b)為終點的向量OZ表示。這種形式使複數四則運算得到恰當的幾何解釋。

  ③三角形式

  複數z=a+bi化為三角形式

  高二數學水平考知識點總結 篇2

  集合間的基本關係

  1.“包含”關係—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含於集合B,或集合B不包含集合A,記作AB或BA

  2.“相等”關係(5≥5,且5≤5,則5=5)

  例項:設A={_2-1=0}B={-1,1}“元素相同”

  結論:對於兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等於集合B,即:A=B

  ①任何一個集合是它本身的子集。AíA

  ②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

  ③如果AíB,BíC,那麼AíC

  ④如果AíB同時BíA那麼A=B

  3.不含任何元素的集合叫做空集,記為Φ

  規定:空集是任何集合的子集,空集是任何非空集合的真子集

  高二數學水平考知識點總結 篇3

  同角三角函式基本關係

  ⒈、同角三角函式的基本關係式

  倒數關係:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關係:

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關係:

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函式關係六角形記憶法:

  六角形記憶法:(參看圖片或參考資料連結)

  構造以"上弦、中切、下割;左正、右餘、中間1"的正六邊形為模型。

  (1)倒數關係:對角線上兩個函式互為倒數;

  (2)商數關係:六邊形任意一頂點上的函式值等於與它相鄰的兩個頂點上函式值的乘積。

  (主要是兩條虛線兩端的三角函式值的乘積)。由此,可得商數關係式。

  (3)平方關係:在帶有陰影線的三角形中,上面兩個頂點上的三角函式值的平方和等於下面頂點上的三角函式值的平方。

  兩角和差公式:

  ⒉兩角和與差的三角函式公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  高二數學水平考知識點總結 篇4

  定義:

  x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。

  範圍:

  傾斜角的取值範圍是0°≤α<180°。

  理解:

  (1)注意“兩個方向”:直線向上的方向、x軸的正方向;

  (2)規定當直線和x軸平行或重合時,它的傾斜角為0度。

  意義:

  ①直線的傾斜角,體現了直線對x軸正向的傾斜程度;

  ②在平面直角座標系中,每一條直線都有一個確定的傾斜角;

  ③傾斜角相同,未必表示同一條直線。

  公式:

  k=tanα

  k>0時α∈(0°,90°)

  k<0時α∈(90°,180°)

  k=0時α=0°

  當α=90°時k不存在

  ax+by+c=0(a≠0)傾斜角為A,

  則tanA=-a/b,

  A=arctan(-a/b)

  當a≠0時,

  傾斜角為90度,即與X軸垂直

  高二數學水平考知識點總結 篇5

  1、在中學我們只研直圓柱、直圓錐和直圓臺。

  所以對圓柱、圓錐、圓臺的旋轉定義、實際上是直圓柱、直圓錐、直圓臺的定義。

  這樣定義直觀形象,便於理解,而且對它們的性質也易推導。

  對於球的定義中,要注意區分球和球面的概念,球是實心的。

  等邊圓柱和等邊圓錐是特殊圓柱和圓錐,它是由其軸截面來定義的,在實踐中運用較廣,要注意與一般圓柱、圓錐的區分。

  2、圓柱、圓錐、圓和球的性質

  (1)圓柱的性質,要強調兩點:

  一是連心線垂直圓柱的底面;

  二是三個截面的性質——平行於底面的截面是與底面全等的圓;軸截面是一個以上、下底面圓的直徑和母線所組成的矩形;平行於軸線的截面是一個以上、下底的圓的弦和母線組成的矩形。

  (2)圓錐的性質,要強調三點

  ①平行於底面的截面圓的性質:

  截面圓面積和底面圓面積的比等於從頂點到截面和從頂點到底面距離的平方比。

  ②過圓錐的頂點,且與其底面相交的截面是一個由兩條母線和底面圓的弦組成的等腰三角形,其面積為:

  易知,截面三角形的頂角不大於軸截面的頂角(如圖10—20),事實上,由BC≥AB,VC=VB=VA可得∠AVB≤BVC。

  由於截面三角形的頂角不大於軸截面的頂角。

  所以,當軸截面的頂角θ≤90°,有0°<α≤θ≤90°,即有當軸截面的頂角θ>90°時,軸截面的面積卻不是的,這是因為,若90°≤α<θ<180°時,1≥sinα>sinθ>0。

  ③圓錐的母線l,高h和底面圓的半徑組成一個直徑三角形,圓錐的有關計算問題,一般都要歸結為解這個直角三角形,特別是關係式l2=h2+R2

  (3)圓臺的性質,都是從“圓臺為截頭圓錐”這個事實推得的,高考,但仍要強調下面幾點:

  ①圓臺的母線共點,所以任兩條母線確定的截面為一等腰梯形,但是,與上、下底面都相交的截面不一定是梯形,更不一定是等腰梯形。

  ②平行於底面的截面若將圓臺的高分成距上、下兩底為兩段的截面面積為S,則其中S1和S2分別為上、下底面面積。

  的截面性質的推廣。

  ③圓臺的母線l,高h和上、下兩底圓的半徑r、R,組成一個直角梯形,且有l2=h2+(R—r)2。

  圓臺的有關計算問題,常歸結為解這個直角梯形。

  (4)球的性質,著重掌握其截面的性質。

  ①用任意平面截球所得的.截面是一個圓面,球心和截面圓圓心的連線與這個截面垂直。

  ②如果用R和r分別表示球的半徑和截面圓的半徑,d表示球心到截面的距離,則R2=r2+d2即,球的半徑,截面圓的半徑,和球心到截面的距離組成一個直角三角形,有關球的計算問題,常歸結為解這個直角三角形。

  高二數學水平考知識點總結 篇6

  反正弦函式的導數:正弦函式y=sinx在[-π/2,π/2]上的反函式,叫做反正弦函式。記作arcsinx,表示一個正弦值為x的角,該角的範圍在[-π/2,π/2]區間內。定義域[-1,1],值域[-π/2,π/2]。

  反函式求導方法

  若F(X),G(X)互為反函式,

  則:F'(X)_'(X)=1

  E.G.:y=arcsinx=siny

  y'_'=1(arcsinx)'_siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

  其餘依此類推

  高二數學水平考知識點總結 篇7

  1、直線的傾斜角的概念:

  當直線l與x軸相交時,取x軸作為基準,x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角.特別地,當直線l與x軸平行或重合時,規定α=0°.

  2、傾斜角α的取值範圍:

  0°≤α<180°.

  當直線l與x軸垂直時,α=90°.

  3、直線的斜率:

  一條直線的傾斜角α(α≠90°)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是k=tanα

  ⑴當直線l與x軸平行或重合時,α=0°,k=tan0°=0;

  ⑵當直線l與x軸垂直時,α=90°,k不存在.

  由此可知,一條直線l的傾斜角α一定存在,但是斜率k不一定存在.

  4、直線的斜率公式:

  給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的座標來表示直線P1P2的斜率:

  斜率公式:

  3.1.2兩條直線的平行與垂直

  1、兩條直線都有斜率而且不重合,如果它們平行,那麼它們的斜率相等;反之,如果它們的斜率相等,那麼它們平行,即

  注意:上面的等價是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個前提,結論並不成立.即如果k1=k2,那麼一定有L1∥L2

  2、兩條直線都有斜率,如果它們互相垂直,那麼它們的斜率互為負倒數;反之,如果它們的斜率互為負倒數,那麼它們互相垂直,即

  3.2.1直線的點斜式方程

  1、直線的點斜式方程:直線經過點且斜率為

  2、、直線的斜截式方程:已知直線的斜率為

  3.2.2直線的兩點式方程

  1、直線的兩點式方程:已知兩點

  2、直線的截距式方程:已知直線

  3.2.3直線的一般式方程

  1、直線的一般式方程:關於x、y的二元一次方程

  (A,B不同時為0)

  2、各種直線方程之間的互化。

  3.3直線的交點座標與距離公式

  3.3.1兩直線的交點座標

  1、給出例題:兩直線交點座標

  L1:3x+4y-2=0

  L1:2x+y+2=0

  解:解方程組

  得x=-2,y=2

  所以L1與L2的交點座標為M(-2,2)

  3.3.2兩點間距離

  兩點間的距離公式

  3.3.3點到直線的距離公式

  1.點到直線距離公式:

  2、兩平行線間的距離公式:

  高二數學水平考知識點總結 篇8

  分層抽樣

  先將總體中的所有單位按照某種特徵或標誌(性別、年齡等)劃分成若干型別或層次,然後再在各個型別或層次中採用簡單隨機抽樣或系用抽樣的辦法抽取一個子樣本,最後,將這些子樣本合起來構成總體的樣本。

  兩種方法

  1.先以分層變數將總體劃分為若干層,再按照各層在總體中的比例從各層中抽取。

  2.先以分層變數將總體劃分為若干層,再將各層中的元素按分層的順序整齊排列,最後用系統抽樣的方法抽取樣本。

  2.分層抽樣是把異質性較強的總體分成一個個同質性較強的子總體,再抽取不同的子總體中的樣本分別代表該子總體,所有的樣本進而代表總體。

  分層標準

  (1)以調查所要分析和研究的主要變數或相關的變數作為分層的標準。

  (2)以保證各層內部同質性強、各層之間異質性強、突出總體內在結構的變數作為分層變數。

  (3)以那些有明顯分層區分的變數作為分層變數。

  分層的比例問題

  (1)按比例分層抽樣:根據各種型別或層次中的單位數目佔總體單位數目的比重來抽取子樣本的方法。

  (2)不按比例分層抽樣:有的層次在總體中的比重太小,其樣本量就會非常少,此時採用該方法,主要是便於對不同層次的子總體進行專門研究或進行相互比較。如果要用樣本資料推斷總體時,則需要先對各層的資料資料進行加權處理,調整樣本中各層的比例,使資料恢復到總體中各層實際的比例結構。

  (1)定義:

  對於函式y=f(x)(x∈D),把使f(x)=0成立的實數x叫做函式y=f(x)(x∈D)的零點。

  (2)函式的零點與相應方程的根、函式的圖象與x軸交點間的關係:

  方程f(x)=0有實數根?函式y=f(x)的圖象與x軸有交點?函式y=f(x)有零點。

  (3)函式零點的判定(零點存在性定理):

  如果函式y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,並且有f(a)·f(b)<0,那麼,函式y=f(x)在區間(a,b)內有零點,即存在c∈(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。

  二二次函式y=ax2+bx+c(a>0)的圖象與零點的關係

  三二分法

  對於在區間[a,b]上連續不斷且f(a)·f(b)<0的函式y=f(x),透過不斷地把函式f(x)的零點所在的區間一分為二,使區間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法。

  1、函式的零點不是點:

  函式y=f(x)的零點就是方程f(x)=0的實數根,也就是函式y=f(x)的圖象與x軸交點的橫座標,所以函式的零點是一個數,而不是一個點.在寫函式零點時,所寫的一定是一個數字,而不是一個座標。

  2、對函式零點存在的判斷中,必須強調:

  (1)、f(x)在[a,b]上連續;

  (2)、f(a)·f(b)<0;

  (3)、在(a,b)記憶體在零點。

  這是零點存在的一個充分條件,但不必要。

  3、對於定義域內連續不斷的函式,其相鄰兩個零點之間的所有函式值保持同號。

  利用函式零點的存在性定理判斷零點所在的區間時,首先看函式y=f(x)在區間[a,b]上的圖象是否連續不斷,再看是否有f(a)·f(b)<0.若有,則函式y=f(x)在區間(a,b)內必有零點。

  四判斷函式零點個數的常用方法

  1、解方程法:

  令f(x)=0,如果能求出解,則有幾個解就有幾個零點。

  2、零點存在性定理法:

  利用定理不僅要判斷函式在區間[a,b]上是連續不斷的曲線,且f(a)·f(b)<0,還必須結合函式的圖象與性質(如單調性、奇偶性、週期性、對稱性)才能確定函式有多少個零點。

  3、數形結合法:

  轉化為兩個函式的圖象的交點個數問題.先畫出兩個函式的圖象,看其交點的個數,其中交點的個數,就是函式零點的個數。

  已知函式有零點(方程有根)求引數取值常用的方法

  1、直接法:

  直接根據題設條件構建關於引數的不等式,再透過解不等式確定引數範圍。

  2、分離引數法:

  先將引數分離,轉化成求函式值域問題加以解決。

  3、數形結合法:

  先對解析式變形,在同一平面直角座標系中,畫出函式的圖象,然後數形結合求解。