八年級數學下冊知識點總結
在平時的學習中,相信大家一定都接觸過知識點吧!知識點是傳遞資訊的基本單位,知識點對提高學習導航具有重要的作用。哪些知識點能夠真正幫助到我們呢?以下是小編收集整理的八年級數學下冊知識點總結,供大家參考借鑑,希望可以幫助到有需要的朋友。
八年級數學下冊知識點總結1
第一章分式
1分式及其基本性質分式的分子和分母同時乘以(或除以)一個不等於零的整式,分式的只不變
2分式的運算
(1)分式的乘除乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母除法法則:分式除以分式,把除式的分子、分母顛倒位置後,與被除式相乘。
(2)分式的加減加減法法則:同分母分式相加減,分母不變,把分子相加減;異分母分式相加減,先通分,變為同分母的分式,再加減
3整數指數冪的加減乘除法
4分式方程及其解法
第二章反比例函式
1反比例函式的表示式、影象、性質
影象:雙曲線
表示式:y=k/x(k不為0)
性質:兩支的增減性相同;
2反比例函式在實際問題中的應用
第三章勾股定理
1勾股定理:直角三角形的兩個直角邊的平方和等於斜邊的。平方
2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等於第三條邊的平方,那麼這個三角形是直角三角形
第四章四邊形
1平行四邊形
性質:對邊相等;對角相等;對角線互相平分。
判定:兩組對邊分別相等的四邊形是平行四邊形;
兩組對角分別相等的四邊形是平行四邊形;
對角線互相平分的四邊形是平行四邊形;
一組對邊平行而且相等的四邊形是平行四邊形。
推論:三角形的中位線平行第三邊,並且等於第三邊的一半。
2特殊的平行四邊形:矩形、菱形、正方形
(1)矩形
性質:矩形的四個角都是直角;
矩形的對角線相等;
矩形具有平行四邊形的所有性質
判定:有一個角是直角的平行四邊形是矩形;對角線相等的平行四邊形是矩形;
推論:直角三角形斜邊的中線等於斜邊的一半。
(2)菱形性質:菱形的四條邊都相等;菱形的對角線互相垂直,並且每一條對角線平分一組對角;菱形具有平行四邊形的一切性質
判定:有一組鄰邊相等的平行四邊形是菱形;對角線互相垂直的平行四邊形是菱形;四邊相等的四邊形是菱形。
(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質。
3梯形:直角梯形和等腰梯形
等腰梯形:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等;同一個底上的兩個角相等的梯形是等腰梯形。
第五章資料的分析
加權平均數、中位數、眾數、極差、方差
八年級數學下冊知識點總結2
1、等式與等量:用
"="號連線而成的式子叫等式。注意:"等量就能代入"!
2、等式的性質:
等式性質1:等式兩邊都加上(或減去)同一個數或同一個整式,所得結果仍是等式;
等式性質2:等式兩邊都乘以(或除以)同一個不為零的數,所得結果仍是等式。
3、方程:含未知數的等式,叫方程。
4、方程的解:使等式左右兩邊相等的未知數的值叫方程的解;注意:"方程的解就能代入"!
5、移項:改變符號後,把方程的項從一邊移到另一邊叫移項。移項的依據是等式性質1.
6、一元一次方程:只含有一個未知數,並且未知數的次數是1,並且含未知數項的係數不是零的整式方程是一元一次方程。
7、一元一次方程的標準形式:ax+b=0(x是未知數,a、b是已知數,且a≠0)。
8、一元一次方程的最簡形式:ax=b(x是未知數,a、b是已知數,且a≠0)。
9、一元一次方程解法的一般步驟:整理方程……去分母……去括號……移項……合併同類項……係數化為1……(檢驗方程的解)。
10、列一元一次方程解應用題:
(1)讀題分析法:…………多用於"和,差,倍,分問題"
仔細讀題,找出表示相等關係的關鍵字,例如:"大,小,多,少,是,共,合,為,完成,增加,減少,配套-----",利用這些關鍵字列出文字等式,並且據題意設出未知數,最後利用題目中的量與量的關係填入代數式,得到方程。
(2)畫圖分析法:…………多用於"行程問題"
利用圖形分析數學問題是數形結合思想在數學中的體現,仔細讀題,依照題意畫出有關圖形,使圖形各部分具有特定的含義,透過圖形找相等關係是解決問題的關鍵,從而取得佈列方程的依據,最後利用量與量之間的關係(可把未知數看做已知量),填入有關的代數式是獲得方程的基礎。
八年級數學下冊知識點總結3
資料的分析
1、算術平均數:
2、加權平均數:加權平均數的計算公式。
權的理解:反映了某個資料在整個資料中的重要程度。
而是以比的或百分比的形式出現及頻數分佈表求加權平均數的方法。
3、將一組資料按照由小到大(或由大到小)的順序排列,如果資料的個數是奇數,則處於中間位置的數就是這組資料的中位數(median);如果資料的個數是偶數,則中間兩個資料的平均數就是這組資料的中位數。
4、一組資料中出現次數最多的資料就是這組資料的眾數(mode)。
5、一組資料中的最大資料與最小資料的差叫做這組資料的極差(range)。
6、 方差越大,資料的波動越大;方差越小,資料的波動越小,就越穩定。
資料的收集與整理的步驟:
1、收集資料
2、整理資料
3、描述資料
4、分析資料
5、撰寫調查報告
6、交流
7、 平均數受極端值的影響眾數不受極端值的影響,這是一個優勢,中位數的計算很少不受極端值的影響。
八年級數學下冊知識點總結4
1、無限不迴圈小數叫做無理數。
在理解無理數時,要抓住“無限不迴圈”這一時之,歸納起來有四類:
開方開不盡的數,如√7 , 3 √2等;
有特定意義的數,如圓周率π,或化簡後含有π的數,
如π/61+8等;
某些三角函式值,如sin60 0等
2、實數的倒數、相反數和絕對值
①相反數
實數與它的相反數時一對數(只有符號不同的兩個數叫做互為相反數,零的相反數是零),從數軸上看,互為相反數的兩個數所對應的點關於原點對稱,如果a與b互為相反數,則有a+b=0,a=—b,反之亦成立。
②絕對值
在數軸上,一個數所對應的點與原點的距離,叫做該數的絕對值。(|a|≥0)。零的絕對值是它本身,也可看成它的相反數,若|a|=a,則a≥0;若|a|=—a,則a≤0。
③倒數
如果a與b互為倒數,則有ab=1,反之亦成立。倒數等於本身的數是1和—1。零沒有倒數。
④數軸
規定了原點、正方向和單位長度的直線叫做數軸(畫數軸時,要注意上述規定的三要素缺一不可)。
解題時要真正掌握數形結合的思想,理解實數與數軸的點是一一對應的,並能靈活運用。
⑤估算
3、平方根、算數平方根和立方根
①算術平方根
一般地,如果一個正數x的平方等於a,即x2=a,那麼這個正數x就叫做a的算術平方根。特別地,0的算術平方根是0。
表示方法:記作“ ”,讀作根號a。
性質:正數和零的算術平方根都只有一個,零的算術平方根是零。
②平方根
一般地,如果一個數x的平方等於a,即x2=a,那麼這個數x就叫做a的平方根(或二次方根)。
表示方法:正數a的平方根記做“ ”,讀作“正、負根號a”。
性質:一個正數有兩個平方根,它們互為相反數;零的平方根是零;負數沒有平方根。
開平方求一個數a的平方根的運算,叫做開平方。注意√a的雙重非負性:√a≥0 ; a ≥0
③立方根
一般地,如果一個數x的立方等於a,即x3=a那麼這個數x就叫做a的立方根(或三次方根)。
表示方法:記作3 √ a
性質:一個正數有一個正的立方根;一個負數有一個負的立方根;零的立方根是零。
注意:— 3 √ a= 3 √— a,這說明三次根號內的負號可以移到根號外面。
4、實數大小的比較
①實數比較大小
正數大於零,負數小於零,正數大於一切負數;
數軸上的兩個點所表示的數,右邊的總比左邊的大;
兩個負數,絕對值大的反而小。
②實數大小比較的幾種常用方法
數軸比較:在數軸上表示的兩個數,右邊的數總比左邊的數大。
求差比較:設a、b是實數a—b>062 a > b ; a—b=062 a =b a—b<062 a < b
求商比較法:設a、b是兩正實數,
絕對值比較法:設a、b是兩負實數,則∣a ∣ > ∣b ∣ 62 a < b 。
平方法:設a、b是兩負實數,則a 2 > b 2 62 a < b 。
5、算術平方根有關計算(二次根式)
①含有二次根號“ √ ”;
②被開方數a必須是非負數。
③運算結果若含有“ √ ”形式,必須滿足
被開方數的因數是整數,因式是整式
被開方數中不含能開得盡方的因數或因式
6、實數的運算
①六種運算:加、減、乘、除、乘方、開方
②實數的運算順序
先算乘方和開方,再算乘除,最後算加減,如果有括號,就先算括號裡面的。
③運算律
加法交換律a+b=b+a
加法結合律( a+b)+c =a+( b+c)
乘法交換律ab=ba
乘法結合律(ab)c =a( bc)
乘法對加法的分配律a( b+c) = ab +ac
初中數學垂直平分線定理
性質定理:在垂直平分線上的點到該線段兩端點的距離相等;
判定定理:到線段2端點距離相等的點在這線段的垂直平分線上
角平分線:把一個角平分的射線叫該角的角平分線。
數學學習思維方法
1、邏輯法
邏輯是一切思考的基礎。邏輯思維,是人們在認識過程中藉助於概念、判斷、推理等思維形式對事物進行觀察、比較、分析、綜合、抽象、概括、判斷、推理的思維過程。邏輯思維,在解決邏輯推理問題時使用廣泛。
2、逆向思維法
逆向思維也叫求異思維,它是對司空見慣的似乎已成定論的事物或觀點反過來思考的一種思維方式。敢於“反其道而思之”,讓思維向對立面的方向發展,從問題的相反面深入地進行探索,樹立新思想,創立新形象。
3、分類法
根據事物的共同點和差異點將事物區分為不同種類的方法,叫做分類法。分類是以比較為基礎的。依據事物之間的共同點將它們合為較大的類,又依據差異點將較大的類再分為較小的類。
分類即要注意大類與小類之間的不同層次,又要做到大類之中的各小類不重複、不遺漏、不交叉。
八年級數學下冊知識點總結5
一、函式:
一般地,在某一變化過程中有兩個變數x與y,如果給定一個x值,相應地就確定了一個y值,那麼我們稱y是x的函式,其中x是自變數,y是因變數。
二、自變數取值範圍
使函式有意義的自變數的取值的全體,叫做自變數的取值範圍。一般從整式(取全體實數),分式(分母不為0)、二次根式(被開方數為非負數)、實際意義幾方面考慮。
三、函式的三種表示法及其優缺點
(1)關係式(解析)法
兩個變數間的函式關係,有時可以用一個含有這兩個變數及數字運算子號的等式表示,這種表示法叫做關係式(解析)法。
(2)列表法
把自變數x的一系列值和函式y的對應值列成一個表來表示函式關係,這種表示法叫做列表法。
(3)圖象法
用圖象表示函式關係的方法叫做圖象法。
四、由函式關係式畫其影象的一般步驟
(1)列表:列表給出自變數與函式的一些對應值
(2)描點:以表中每對對應值為座標,在座標平面內描出相應的點
(3)連線:按照自變數由小到大的順序,把所描各點用平滑的曲線連線起來。
五、正比例函式和一次函式
1、正比例函式和一次函式的概念
一般地,若兩個變數x,y間的關係可以表示成(k,b為常數,k0)的形式,則稱y是x的一次函式(x為自變數,y為因變數)。
特別地,當一次函式中的b=0時(即)(k為常數,k0),稱y是x的正比例函式。
2、一次函式的影象:所有一次函式的影象都是一條直線
3、一次函式、正比例函式影象的主要特徵:一次函式的影象是經過點(0,b)的直線;正比例函式的影象是經過原點(0,0)的直線。
第七章知識點
1、二元一次方程
含有兩個未知數,並且所含未知數的項的次數都是1的整式方程叫做二元一次方程。
2、二元一次方程的解
適合一個二元一次方程的一組未知數的值,叫做這個二元一次方程的一個解。
3、二元一次方程組
含有兩個未知數的兩個一次方程所組成的一組方程,叫做二元一次方程組。
4、二元一次方程組的解
二元一次方程組中各個方程的公共解,叫做這個二元一次方程組的解。
5、二元一次方程組的解法
(1)代入(消元)法(2)加減(消元)法
第八章知識點
1、刻畫資料的集中趨勢(平均水平)的'量:平均數、眾數、中位數
2、平均數
(2)加權平均數:
3、眾數
一組資料中出現次數最多的那個資料叫做這組資料的眾數。
4、中位數
一般地,將一組資料按大小順序排列,處於最中間位置的一個數據(或最中間兩個資料的平均數)叫做這組資料的中位數。
八年級數學下冊知識點總結6
平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。
平行四邊形的性質:平行四邊形的對邊相等;
平行四邊形的對角相等。
平行四邊形的對角線互相平分。
平行四邊形的判定 1.兩組對邊分別相等的四邊形是平行四邊形
2、對角線互相平分的四邊形是平行四邊形;
3、兩組對角分別相等的四邊形是平行四邊形;
4、一組對邊平行且相等的四邊形是平行四邊形。
三角形的中位線平行於三角形的第三邊,且等於第三邊的一半。
直角三角形斜邊上的中線等於斜邊的一半。
矩形的定義:有一個角是直角的平行四邊形。
矩形的性質: 矩形的四個角都是直角;
矩形的對角線平分且相等。AC=BD
矩形判定定理: 1.有一個角是直角的平行四邊形叫做矩形。
2、對角線相等的平行四邊形是矩形。
3、有三個角是直角的四邊形是矩形。
菱形的定義 :鄰邊相等的平行四邊形。
菱形的性質:菱形的四條邊都相等;
菱形的兩條對角線互相垂直,並且每一條對角線平分一組對角。
菱形的判定定理: 1.一組鄰邊相等的平行四邊形是菱形。
2、對角線互相垂直的平行四邊形是菱形。
3、四條邊相等的四邊形是菱形。
S菱形=1/2×ab(a、b為兩條對角線)
正方形定義:一個角是直角的菱形或鄰邊相等的矩形。
正方形的性質:四條邊都相等,四個角都是直角。 正方形既是矩形,又是菱形。
正方形判定定理:1.鄰邊相等的矩形是正方形。 2.有一個角是直角的菱形是正方形。
梯形的定義: 一組對邊平行,另一組對邊不平行的四邊形叫做梯形。
直角梯形的定義:有一個角是直角的梯形
等腰梯形的定義:兩腰相等的梯形。
等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;
等腰梯形的兩條對角線相等。
等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。
解梯形問題常用的輔助線:如圖
線段的重心就是線段的中點。 平行四邊形的重心是它的兩條對角線的交點。 三角形的三條中線交於疑點,這一點就是三角形的重心。 寬和長的比是 (約為0.618)的矩形叫做黃金矩形。