高一數學教學計劃範文集合六篇
日子如同白駒過隙,不經意間,我們又將迎來新的喜悅、新的收穫,是時候認真思考計劃該如何寫了。那麼計劃怎麼擬定才能發揮它最大的作用呢?以下是小編為大家收集的高一數學教學計劃6篇,歡迎大家借鑑與參考,希望對大家有所幫助。
高一數學教學計劃 篇1
教材分析:
解不等式是不等式學習的主要內容,是中學數學的一項重要技能。主要型別有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,初中已經學習,二次不等式是重點,也是學習的難點。作為數學重要的工具及方法,經常運用於其它數學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數形結合”方法,這種方法將二次函式,二次方程結合為一體,並且藉助“圖形”直觀地得出答案,充分展現了數學知識之間的內在聯絡,另外也展現了“數形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。
學情分析:
初中已經學習了一元一次不等式(或組)的解法,積累了一定的解題經驗。同時,對於二次方程,二次函式等相關知識學生均較為熟悉。然而,根據自己的調查,一少部分學生對於一元一次不等式及不等式組的解法都表現出一定程度的陌生。進而,可以先從複習簡單的一次不等式及不等式組入手加以展開教學。
學生心理方面,學習積極性較高,對數學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,儘管是外在的誘因。
教學目標:
①知識與技能
熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集
②過程與方法
經歷不等式求解的探索及發現過程,體驗“數形結合及轉化”思想的魅力,掌握方法,學會學習
③情感、態度及價值觀
在上述過程中,體驗成功,激發了對數學學習的興趣及信心,發展了對數學學習的積極情感,增強了學習的內在動機
教學重點:
一元二次不等式的解法
教學難點:
解法的探索及發現,關鍵在於“識圖能力”
反思:
今天的課堂,這個難點突破欠缺力量,主要緣於自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,並且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環節:
首先,對平面曲線上點的橫座標與縱座標之間的對應關係表現陌生,進而對它們的取值變化情況感到費解。
其次,是差生的思維能力尚處於“經驗思維”,辯證思維能力薄弱,進而對運動中的點的座標取值範圍只能是“一籌莫展”。
在瞭解情況後,遵循“最近發展區”原理,以問題串的形式給差生提供必要的幫助後,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。
教學程式:
一、複習一元一次不等式及不等式組的解法
以題組形式設計習題
①2x+3>7
②不等式組
③ax>b
二、創設二次不等式的生活背景例項,引入課題
採用課本上的例項,有關網路收費問題
三、一元二次不等式的解法探索
(1)
在教師的啟發引導下,從特殊到一般,學生經歷“轉化”方法的探索及發現過程。
由於這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最後以課外思考題的形式設計相應習題。
(2)
採取啟發式教學,師生共同經歷“數形結合”方法的探索及發現過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織並完成,並撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,儘管這些知識不完整,語言或許不規範,思維或許不嚴密。
之後,從特殊到一般,研究一般的二元一次不等式的解法。由於經歷了前面的解題過程,這個環節全部放手讓學生完成,鼓勵他們透過或獨立或合作的方式解決學習任務,完成課本上的表格。
反思:根據課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。於是,在大多數學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環節的講解力度,力求突破難點。
四、練習環節
可以說,即使到了高三,仍然有不少同學對於一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習型別看,這節課顯然屬於技能課,對於技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。
課本上,配置了不少練習題。對於練習,我採取多種方式,或叫學生上黑板板書,藉助學生練習規範解題格式;或者口答,說解題思路及答案;或者下面獨立練習。
五、課堂小結
知識,思想、方法及感悟等
六、課後作業
①作業設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源於課本上的A組或B組
②課外思考題:
1比較兩種解題方法即“轉化及數形結合”方法的優劣,以及它們之間的異同
2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值範圍
變式一:戓將R改為空集,此時結論如何
變式二:仿上,自己改編條件,並解之。
反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優生服務,發展學生的思維能力,激發他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現“舉一反三”的目標。
高一數學教學計劃 篇2
一、學情分析
這節課是在學生已經學過的二維的平面直角座標系的基礎上的推廣,是以後學習空間向量等內容的基礎。
二、教學目標
1. 讓學生經歷用類比的數學思想方法探索空間直角座標系的建立方法,進一步體會數學概念、方法產生和發展的過程,學會科學的思維方法。
2. 理解空間直角座標系與點的座標的意義,掌握由空間直角座標系內的點確定其座標或由座標確定其在空間直角座標系內的點,認識空間直角座標系中的點與座標的關係。
3. 進一步培養學生的空間想象能力與確定性思維能力。
三、教學重點:在空間直角座標系中點的座標的確定。
四、教學難點:透過建立空間直角座標系利用點的座標來確定點在空間內的位置
五、教學過程
(一)、問題情景
1. 確定一個點在一條直線上的位置的方法。
2. 確定一個點在一個平面內的位置的方法。
3. 如何確定一個點在三維空間內的位置?
例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?
在學生思考討論的基礎上,教師明確:確定點在直線上,透過數軸需要一個數;確定點在平面內,透過平面直角座標系需要兩個數。那麼,要確定點在空間內,應該需要幾個數呢?透過類比聯想,容易知道需要三個數。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個牆面的距離即可。
(此時學生只是意識到需要三個數,還不能從座標的角度去思考,因此,教師在這兒要重點引導)
教師明晰:在地面上建立直角座標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數表示物體離地面的高度,即需第三個座標z.因此,只要知道電燈到地面的距離、到相鄰的兩個牆面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個座標分別為4和5,到地面的距離為3,則可以用有序陣列(4,5,3)確定這個電燈的位置(如圖26-3)。
這樣,仿照初中平面直角座標系,就建立了空間直角座標系O-xyz,從而確定了空間點的位置。
(二)、建立模型
1. 在前面研究的基礎上,先由學生對空間直角座標系予以抽象概括,然後由教師給出準確的定義。
從空間某一個定點O引三條互相垂直且有相同單位長度的數軸,這樣就建立了空間直角座標系O-xyz,點O叫作座標原點,x軸、y軸、z軸叫作座標軸,這三條座標軸中每兩條確定一個座標平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進一步明確:
(1)在空間直角座標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個座標系為右手座標系,課本中建立的座標系都是右手座標系。
(2)將空間直角座標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直於z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等於y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角座標系O-xyz中點的座標。
思考:在空間直角座標系中,空間任意一點A與有序陣列(x,y,z)有什麼樣的對應關係?
在學生充分討論思考之後,教師明確:
(1)過點A作三個平面分別垂直於x軸,y軸,z軸,它們與x軸、y軸、z軸分別交於點P,Q,R,點P,Q,R在相應數軸上的座標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序陣列(x,y,z)。
(2)反之,對任意一個有序陣列(x,y,z),按照剛才作圖的相反順序,在座標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的座標分別是x,y,z,再分別過這些點作垂直於各自所在的座標軸的平面,這三個平面的交點就是所求的點A.
這樣,在空間直角座標系中,空間任意一點A與有序陣列(x,y,z)之間就建立了一種一一對應關係:A (x,y,z)。
教師進一步指出:空間直角座標系O-xyz中任意點A的座標的概念
對於空間任意點A,作點A在三條座標軸上的射影,即經過點A作三個平面分別垂直於x軸、y軸和z軸,它們與x軸、y軸、z軸分別交於點P,Q,R,點P,Q,R在相應數軸上的座標依次為x,y,z,我們把有序陣列(x,y,z)叫作點A的座標,記為A(x,y,z)。
(三)、例 題 與 練 習
1. 課本135頁例1.
注意:在分析中緊扣座標定義,強調三個步驟,第一步從原點出發沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角座標系中,座標平面xOy,xOz,yOz上點的座標有什麼特點?
(2)在空間直角座標系中,x軸、y軸、z軸上點的座標有什麼特點?
解:(1)xOy平面、xOz平面、yOz平面內的點的座標分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點的座標分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為座標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角座標系,求這個長方體各個頂點的座標。
注意:此題可以由學生口答,教師點評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角座標系,那麼各頂點的座標又是怎樣的呢?
得出結論:建立不同的座標系,所得的同一點的座標也不同。
[練 習]
1. 在空間直角座標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為座標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角座標系,求這個長方體各個頂點的座標。
3. 寫出座標平面yOz上yOz平分線上的點的座標滿足的條件。
(四)、拓展延伸
分別寫出點(1,1,1)關於各座標軸和各個座標平面對稱的點的座標。
六、評價設計
1、 練習 : 課本P136. 1、2、3
2、 課堂作業: 課本P138. 1、2
高一數學教學計劃 篇3
教學目標:
知識與技能透過具體例項瞭解冪函式的圖象和性質,並能進行簡單的應用.
過程與方法能夠類比研究一般函式、指數函式、對數函式的過程與方法,來研究冪函式的圖象和性質.
情感、態度、價值觀體會冪函式的變化規律及蘊含其中的對稱性.
教學重點:
重點從五個具體冪函式中認識冪函式的一些性質.
難點畫五個具體冪函式的圖象並由圖象概括其性質,體會圖象的變化規律.
教學程式與環節設計:
材料一:冪函式定義及其圖象.
一般地,形如 的函式稱為冪函式,其中 為常數.
冪函式的定義來自於實踐,它同指數函式、對數函式一樣,也是基本初等函式,同樣也是一種形式定義的函式,引導學生注意辨析.
下面我們舉例學習這類函式的一些性質.
作出下列函式的圖象:利用所學知識和方法嘗試作出五個具體冪函式的圖象,觀察所圖象,體會冪函式的變化規律.
定義域
值域
奇偶性
單調性
定點
師:引導學生應用畫函式的性質畫圖象,如:定義域、奇偶性.
師生共同分析,強調畫圖象易犯的錯誤.
材料二:冪函式性質歸納.
(1)所有的冪函式在(0,+)都有定義,並且圖象都過點(1,1);
(2) 時,冪函式的圖象透過原點,並且在區間 上是增函式.特別地,當 時,冪函式的圖象下凸;當 時,冪函式的圖象上凸;
(3) 時,冪函式的圖象在區間 上是減函式.在第一象限內,當 從右邊趨向原點時,圖象在 軸右方無限地逼近 軸正半軸,當 趨於 時,圖象在 軸上方無限地逼近 軸正半軸.
例1、求下列函式的定義域;
例2、比較下列兩個代數值的大小:
[例3]討論函式 的定義域、奇偶性,作出它的圖象,並根據圖象說明函式的單調性.
練習
1.利用冪函式的性質,比較下列各題中兩個冪的值的大小:
2.作出函式 的圖象,根據圖象討論這個函式有哪些性質,並給出證明.
3.作出函式 和函式 的圖象,求這兩個函式的定義域和單調區間.
4.用圖象法解方程:
1.如圖所示,曲線是冪函式 在第一象限內的圖象,已知 分別取 四個值,則相應圖象依次為:.
2.在同一座標系內,作出下列函式的圖象,你能發現什麼規律?
高一數學教學計劃 篇4
本學期擔任高一(9)(10)兩班的數學教學工作,兩班學生共有120人,初中的基礎參差不齊,但兩個班的學生整體水平不高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、指導思想:
使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下。
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,瞭解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。透過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、資料處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
二、教學目標.
(一)情意目標
(1)透過分析問題的方法的教學,培養學生的學習的興趣。
(2)提供生活背景,透過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究函式、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維能力的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)能力要求培養學生記憶能力。
(1)透過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體資料的記憶。
(3)透過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶能力。
2、培養學生的運算能力。
(1)透過機率的訓練,培養學生的運算能力。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算能力。
(3)透過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷效能力。
(4)透過一題多解、一題多變培養正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算能力。
三、學生在數學學習上存在的主要問題
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面:
1、進一步學習條件不具備.高中數學與初中數學相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分佈與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不瞭解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯絡,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
高一數學教學計劃 篇5
一、教材分析(結構系統、單元內容、重難點)
必修5第一章:解三角形;重點是正弦定理與餘弦定理;難點是正弦定理與餘弦定理的應用;第二章:數列;重點是等差數列與等比數列的前n項的和;難點是等差數列與等比數列前n項的和與應用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規劃問題及應用;
必修2第一章:空間幾何體;重點是空間幾何體的三檢視和直觀圖及表面積與體積;難點是空間幾何體的三檢視;第二章:點、直線、平面之間的`位置關係;重點與難點都是直線與平面平行及垂直的判定及其性質;第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當的直線方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關係;難點是直線與圓的位置關係;
二、學生分析(雙基智慧水平、學習態度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較紮實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1.透過對任意三角形邊長和角度關係的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2.透過日常生活中的例項,瞭解數列的概念和幾種簡單的表示方法,瞭解數列是一種特殊的函式;理解等差數列、等比數列的概念,探索並掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3.理解不等式(組)對於刻畫不等關係的意義和價值;掌握求解一元二次不等式的基本方法,並能解決一些實際問題;能用一元二次不等式組表示平面區域,並嘗試解決簡單的二元線性規劃問題。
4.幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關係,並利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外瞭解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角座標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關係,瞭解空間直角座標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一;上好每一節課,及時對學生的思想進行觀察與指導;課後進行有效的輔導;進行有效的課堂反思。
五、教學進度
周次 課、章、節 教學內容 備註
1 1.1,1.2 解三角形
2 1.2 解三角形
3 2.1,2.2 數列的概念與簡單表示法,等差數列
4 2.3 等差數列的前n項和
5 2.4,2.5 等比數列及前n項和
6 2.5 考試
7 3.1,3.2 不等關係與不等式,一元二次不等式及其解法
8 3.3,3.4 二元一次不等式(組)與簡單線性規劃問題,基本不等式
9 考試,複習
10 期中考試
11 1.1,1.2 空間幾何體的結構,三檢視,直觀圖
12 1.3 空間幾何體的表面積與體積
13 2.1,2.2 空間點、直線、平面的位置關係,直線、平面平行的判定及其性質
14 2.3 直線、平面的判定及其性質
15 3.1,3.2 直線的傾斜角與斜率,直線方程
16 3.3 直線的交點座標與距離公式
17 4.1,4.2 圓的方程,直線、圓的位置關係
18 4.3 空間直角座標系
19 複習
20 考試
高一數學教學計劃 篇6
一、基本情況分析
任教153班與154班兩個班,其中153班是文化班有男生51人,女生22人;154班是美術班有男生23人,女生21人,並且有音樂生8人。兩個班基礎差,學習數學的興趣都不高。
二、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
三、教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、加強課堂教學研究,科學設計教學方法。根據教材的內容和特徵,實行啟發式和討論式教學。發揚教學民主,師生雙方密切合作,交流互動,讓學生感受、理解知識的產生和發展的過程。教研組要根據教材各章節的重難點制定教學專題,每人每學期指定一個專題,安排一至二次教研課。年級備課組每週舉行一至二次教研活動,積累教學經驗。
6、落實課外活動的內容。組織和加強數學興趣小組的活動內容,加強對高層次學生的競賽輔導,培養拔尖人才。
四、教研課題
高中數學新課程新教法
五。教學進度
第一週 集 合
第二週 函式及其表示
第三週 函式的基本性質
第四周 指數函式
第五週 對數函式
第六週 冪函式
第七週 函式與方程
第八週 函式的應用
第九周 期中考試
第十十一週 空間幾何體
第十二週 點,直線,面之間的位置關係
第十三十四周 直線與平面平行與垂直的判定與性質
第十五十六週 直線與方程
第十八十九周 圓與方程
第二十週 期末考試