有關高中數學說課稿4篇
作為一名辛苦耕耘的教育工作者,時常要開展說課稿準備工作,說課稿是進行說課準備的文稿,有著至關重要的作用。那麼寫說課稿需要注意哪些問題呢?下面是小編收集整理的高中數學說課稿4篇,僅供參考,歡迎大家閱讀。
高中數學說課稿 篇1
各位評委老師好:今天我說課的題目是
是必修章第節的內容,我將以新課程標準的理念指導本節課的教學,從教材分析,教法學法,教學過程,教學評價四個方面加以說明。
一、 教材分析
是在學習了基礎上進一步研究 併為後面學習 做準備,在整個高中數學中起著承上啟下的作用,因此本節內容十分重要。
根據新課標要求和學生實際水平我制定以下教學目標
1、 知識能力目標:使學生理解掌握
2、 過程方法目標:透過觀察歸納抽象概括使學生構建領悟 數學思想,培養 能力
3、 情感態度價值觀目標:透過學習體驗數學的科學價值和應用價值,培養善於
觀察勇於思考的學習習慣和嚴謹 的科學態度
根據教學目標、本節特點和學生實際情況本節重點是 ,由於學生對 缺少感性認識,所以本節課的重點是
二、教法學法
根據教師主導地位和學生主體地位相統一的規律,我採用引導發現法為本節課的主要教學方法並藉助多媒體為輔助手段。在教師點撥下,學生自主探索、合作交流來尋求解決問題的方法。
三、 教學過程
1、由……引入:
把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”,繼而緊張地沉思,期待尋找理由和證明過程。 在實際情況下進行學習,可以使學生利用已有知識與經驗,同化和索引出當前學習的新知識,這樣獲取的知識,不但易於保持,而且易於遷移到陌生的問題情境中。
對於本題:……
2、由例項得出本課新的知識點是:……
3、講解例題。
我們在講解例題時,不僅在於怎樣解,更在於為什麼這樣解,而及時對解題方法和規律進行概括,有利於發展學生的思維能力。在題中:
4、能力訓練。
課後練習……
使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
5、總結結論,強化認識。
知識性內容的小結,可把課堂教學傳授的知識儘快化為學生的素質;數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,並且逐漸培養學生的良好的個性品質目標。
6、變式延伸,進行重構。
重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利於學生對知識的串聯、累積、加工,從而達到舉一反三的效果。
四、教學評價
學生學習的學習結果評價當然重要,但是更重要的是學生學習的過程評價,教師應當高度重視學生學習過程中的參與度、自信心、團隊精神合作意識數學能力的發現,以及學習的興趣和成就感。
高中數學說課稿 篇2
一、說教材:
1. 地位及作用:
“橢圓及其標準方程”是高中《解析幾何》第二章第七節內容,是本書的重點內容之一,也是歷年高考、會考的必考內容,是在學完求曲線方程的基礎上,進一步研究橢圓的特性,以完成對圓錐曲線的全面研究,為今後的學習打好基礎,因此本節內容具有承前啟後的作用。
2. 教學目標:
根據《教學大綱》,《考試說明》的要求,並根據教材的具體內容和學生的實際情況,確定本節課的教學目標:
(1)知識目標:掌握橢圓的定義和標準方程,以及它們的應用。
(2)能力目標:
(a)培養學生靈活應用知識的能力。
(b) 培養學生全面分析問題和解決問題的能力。
(c)培養學生快速準確的運算能力。
(3)德育目標:培養學生數形結合思想,類比、分類討論的思想以及確立從感性到理性認識的辯證唯物主義觀點。
3. 重點、難點和關鍵點:
因為橢圓的定義和標準方程是解決與橢圓有關問題的重要依據,也是研究雙曲線和拋物線的基礎,因此,它是本節教材的重點;由於學生推理歸納能力較低,在推導橢圓的標準方程時涉及到根式的兩次平方,並且運算也較繁,因此它是本節課的難點;座標系建立的好壞直接影響標準方程的推導和化簡,因此建立一個適當的直角座標系是本節的關鍵。
二、 說教材處理
為了完成本節課的教學目標,突出重點、分散難點、根據教材的內容和學生的實際情況,對教材做以下的處理:
1.學生狀況分析及對策:
2.教材內容的組織和安排:
本節教材的處理上按照人們認識事物的規律,遵循由淺入深,循序漸進,層層深入的原則組織和安排如下:
(1)複習提問(2)引入新課(3)新課講解(4)反饋練習(5)歸納總結(6)佈置作業
三、 說教法和學法
1.為了充分調動學生學習的積極性,是學生變被動學習為主動而愉快的學習,引導學生自己動手,讓學生的思維活動在教師的引導下層層展開。請學生參與課堂。加強方程推導的指導,是傳授知識與培養能力有機的溶為一體,為此,本節課採用“引導教學法”。
2.利用電腦所畫圖形的動態演示總結規律。同時利用電腦的動態演示激發學生的學習興趣。
四、 教學過程
教學環節
3.設a(-2,0),b(2,0),三角形abp周長為10,動點p軌跡方程。
例1屬基礎,主要反饋學生掌握基本知識的程度。
例2可強化基本技能訓練和基本知識的靈活運用。
小結
為使學生對本節內容有一個完整深刻的認識,教師引導學生從以下幾個方面進行小結。
1.橢圓的定義和標準方程及其應用。
2.橢圓標準方程中a,b,c諸關係。
3.求橢圓方程常用方法和基本思路。
透過小結形成知識體系,加深對本節知識的理解培養學生的歸納總結能力,增強學生學好圓錐曲線的信心。
佈置作業
(1) 77頁——78頁 1,2,3,79頁 11
(2) 預習下節內容
鞏固本節所學概念,強化基本技能訓練,培養學生良好的學習習慣和品質,發現和彌補教學中的遺漏和不足。
高中數學說課稿 篇3
各位老師你們好!今天我要為大家講的課題是
首先,我對本節教材進行一些分析:
一、教材分析(說教材):
1. 教材所處的地位和作用:
本節內容在全書和章節中的作用是:《 》是 中數學教材第 冊第 章第 節內容。在此之前學生已學習了 基礎,這為過渡到本節的學習起著鋪墊作用。本節內容是在 中,佔據 的地位。以及為其他學科和今後的學習打下基礎。
2. 教育教學目標:
根據上述教材分析,考慮到學生已有的認知結構心理特徵,制定如下教學目標:
(1)知識目標: (2)能力目標:透過教學初步培養學生分析問題,解決實際問題,讀圖分析,收集處理資訊,團結協作,語言表達能力以及透過師生雙邊活動,初步培養學生運用知識的能力,培養學生加強理論聯絡實際的能力,(3)情感目標:透過 的教學引導學生從現實的生活經歷與體驗出發,激發學生學習興趣。
3. 重點,難點以及確定依據:
本著課程標準,在吃透教材基礎上,我確立瞭如下的教學重點、難點
重點: 透過 突出重點
難點: 透過 突破難點
關鍵:
下面,為了講清重難上點,使學生能達到本節課設定的目標,再從教法和學法上談談:
二、教學策略(說教法)
1. 教學手段:
如何突出重點,突破難點,從而實現教學目標。在教學過程中擬計劃進行如下操作:教學方法。基於本節課的特點: 應著重採用 的教學方法。
2. 教學方法及其理論依據:堅持“以學生為主體,以教師為主導”的原則,根據學生的心理發展規律,採用學生參與程度高的學導式討論教學法。在學生看書,討論的基礎上,在老師啟發引導下,運用問題解決式教法,師生交談法,影象訊號法,問答式,課堂討論法。在採用問答法時,特別注重不同難度的問題,提問不同層次的學生,面向全體,使基礎差的學生也能有表現機會,培養其自信心,激發其學習熱情。有效的開發各層次學生的潛在智慧,力求使學生能在原有的基礎上得到發展。同時透過課堂練習和課後作業,啟發學生從書本知識回到社會實踐。提供給學生與其生活和周圍世界密切相關的數學知識,學習基礎性的知識和技能,在教學中積極培養學生學習興趣和動機,明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力。
3. 學情分析:(說學法)
我們常說:“現代的文盲不是不識字的人,而是沒有掌握學習方法的人”,因而在教學中要特別重視學法的指導。
(1) 學生特點分析:中學生心理學研究指出,高中階段是(查同中學生心發展情況)抓住學
生特點,積極採用形象生動,形式多樣的教學方法和學生廣泛的積極主動參與的學習方式,定能激發學生興趣,有效地培養學生能力,促進學生個性發展。生理上表少年好動,注意力易分散
(2) 知識障礙上:知識掌握上,學生原有的知識 ,許多學生出現知識遺忘,所以應全面系統的去講述;學生學習本節課的知識障礙, 知識 學生不易理解,所以教學中老師應予以簡單明白,深入淺出的分析。
(3) 動機和興趣上:明確的學習目的,老師應在課堂上充分調動學生的學習積極性,激發來自學生主體的最有力的動力
最後我來具體談談這一堂課的教學過程:
4. 教學程式及設想:
(1)由 引入:把教學內容轉化為具有潛在意義的問題,讓學生產生強烈的問題意識,使學生的整個學習過程成為“猜想”繼而緊張的沉思,期待錄找理由和證明過程。在實際情況下學習可以使學生利用已有的知識與經驗,同化和索引出當肖學習的新知識,這樣獲取知識,不但易於保持,而且易於遷移到陌生的問題情境中。
(2)由例項得出本課新的知識點
(3)講解例題。在講例題時,不僅在於怎樣解,更在於為什麼這樣解,而及時對解題方法和規律進行概括,有利於學生的思維能力。
(4)能力訓練。課後練習使學生能鞏固羨慕自覺運用所學知識與解題思想方法。
(5)總結結論,強化認識。知識性的內容小結,可把課堂教學傳授的知識儘快化為學生的素質,數學思想方法的小結,可使學生更深刻地理解數學思想方法在解題中的地位和應用,並且逐步培養學生良好的個性品質目標。
(6)變式延伸,進行重構,重視課本例題,適當對題目進行引申,使例題的作用更加突出,有利於學生對知識的串聯,累積,加工,從而達到舉一反三的效果。
(7)板書
(8)佈置作業。 針對學生素質的差異進行分層訓練,既使學生掌握基礎知識,又使學有餘力的學生有所提高,
教學程式:
課堂結構:複習提問,匯入講授課,課堂練習,鞏固新課,佈置作業等五部分
高中數學說課稿 篇4
1、教學目標:
一、藉助單位圓理解任意角的三角函式的定義。
二、根據三角函式的定義,能夠判斷三角函式值的符號。
三、透過學生積極參與知識的"發現"與"形成"的過程,培養合情猜測的能力,從中感悟數學概念的嚴謹性與科學性。
四、讓學生在任意角三角函式概念的形成過程中,體會函式思想,體會數形結合思想。
2、教學重點與難點:
重點:任意角的正弦、餘弦、正切的定義;三角函式值的符號。
難點:任意角的三角函式概念的建構過程。
授課過程:
一、引入
在我們的現實世界中的許多運動變化都有迴圈往復、週而復始的現象,這種變化規律稱為週期性。如何用數學的方法來刻畫這種變化?從這節課開始,我們要來學習刻畫這種規律的數學模型之一――三角函式。
二、創設情境
三角函式是與角有關的函式,在學習任意角概念時,我們知道在直角座標系中研究角,可以給學習帶來許多方便,比如我們可以根據角終邊的位置把它們進行歸類,現在大家考慮:若在直角座標系中來研究銳角,則銳角三角函式又可怎樣定義呢?
學生情況估計:學生可能會提出兩種定義的方式,一種定義為邊之比,另一種定義在比值中引入了終邊上的一點P的座標。
問題:
1、銳角三角函式能否表示成第二種比值方式?
2、點P能否取在終邊上的其它位置?為什麼?
3、點P在哪個位置,比值會更簡潔?(引出單位圓的定義)。指出sina=mP的.函式依舊錶示一個比值,不過其分母為1而已。
練習:計算的各三角函式值。
三、任意角的三角函式的定義
角的概念已經推廣道了任意角,那麼三角函式的定義在任意角的範圍裡改怎麼定義呢?
嘗試:根據銳角三角函式的定義,你能嘗試著給出任意角三角函式的定義嗎?
評價學生給出的定義。給出任意角三角函式的定義。
四、解析任意角三角函式的定義
三角函式首先是函式。你能從函式觀點解析三角函式嗎?(定義域)
對於確定的角a,上面三個函式值都是唯一確定的,所以,正弦、餘弦、正切都是以角為自變數,以單位圓上點的座標或座標的比值為函式值的函式,我們將它們統稱為三角函式。由於角的集合和實數集之間可以建立一一對應的關係,三角函式可以看成是自變數為實數的函式。
五、三角函式的應用。
1、已知角,求a的三角函式值。
2、已知角a終邊上的一點P(-3,-4),求各三角函式值。
以上兩道書上的例題,讓學生自習看書,學生看書的同時,老師提出問題:
1、已知角如何求三角函式值?
2、利用角a的終邊上任意一點的座標也可以定義三角函式,你能給出這種定義嗎?(這種定義與課本中給出的定義各有什麼特點?)
3、變式:已知角a終邊上點P(-3b,-4b),(b0),求角a的各三角函式值。
4、探究:三角函式的值在各象限的符號。
六、小結及作業
教案設計說明:
新教材的教學理念之一是讓學生去體驗新知識的發生過程,這節《任意角三角函式》的教案,主要圍繞這一點來設計。
首先,角的概念推廣了,那麼銳角三角函式的定義是否也該推廣到任意角的三角函式的定義呢?透過這個問題,讓學生體會到新知識的發生是可能的,自然的。
其次,到底應該怎樣去合理定義任意角的三角函式呢?讓學生提出自己的想法,同時讓學生去辨證這個想法是否是科學的?因為一個概念是嚴謹的,科學的,不能隨心所欲地編造,必須去論證它的合理性,至少這種概念不能和銳角三角函式的定義有所衝突。在這個立-破的過程中,讓學生去體驗一個新的數學概念可能是如何形成,在形成的過程中可以從哪些角度加以科學的辯思。這樣也有助於學生對任意角三角函式概念的理解。
再次,讓學生充分體會在任意角三角函式定義的推廣中,是如何將直角三角形這個"形"的問題,轉換到直角座標系下點的座標這個"數"的過程的。培養數形結合的思想。