查文庫>總結> 高一數學知識點總結人教版5篇

高一數學知識點總結

高一數學知識點總結人教版5篇

  總結是指社會團體、企業單位和個人對某一階段的學習、工作或其完成情況加以回顧和分析,得出教訓和一些規律性認識的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,因此十分有必須要寫一份總結哦。那麼總結應該包括什麼內容呢?以下是小編整理的高一數學知識點總結人教版5篇,僅供參考,希望能夠幫助到大家。

高一數學知識點總結人教版5篇1

  函式的奇偶性(整體性質)

  (1)偶函式

  一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=f(x),那麼f(x)就叫做偶函式.

  (2).奇函式

  一般地,對於函式f(x)的定義域內的任意一個x,都有f(-x)=—f(x),那麼f(x)就叫做奇函式.

  (3)具有奇偶性的函式的圖象的特徵

  偶函式的圖象關於y軸對稱;奇函式的圖象關於原點對稱.

  利用定義判斷函式奇偶性的步驟:

  ○1首先確定函式的定義域,並判斷其是否關於原點對稱;

  ○2確定f(-x)與f(x)的關係;

  ○3作出相應結論:若f(-x)=f(x)或f(-x)-f(x)=0,則f(x)是偶函式;若f(-x)=-f(x)或f(-x)+f(x)=0,則f(x)是奇函式.

  (2)由f(-x)±f(x)=0或f(x)/f(-x)=±1來判定;

  (3)利用定理,或藉助函式的圖象判定.

  9、函式的解析表示式

  (1).函式的解析式是函式的一種表示方法,要求兩個變數之間的函式關係時,一是要求出它們之間的對應法則,二是要求出函式的.定義域.

  (2)求函式的解析式的主要方法有:

  1)湊配法

  2)待定係數法

  3)換元法

  4)消參法

  10.函式(小)值(定義見課本p36頁)

  ○1利用二次函式的性質(配方法)求函式的(小)值

  ○2利用圖象求函式的(小)值

  ○3利用函式單調性的判斷函式的(小)值:

  如果函式y=f(x)在區間[a,b]上單調遞增,在區間[b,c]上單調遞減則函式y=f(x)在x=b處有值f(b);

  如果函式y=f(x)在區間[a,b]上單調遞減,在區間[b,c]上單調遞增則函式y=f(x)在x=b處有最小值f(b);

高一數學知識點總結人教版5篇2

  形如y=k/x(k為常數且k≠0)的函式,叫做反比例函式。

  自變數x的取值範圍是不等於0的一切實數。

  反比例函式影象性質:

  反比例函式的影象為雙曲線。

  由於反比例函式屬於奇函式,有f(-x)=-f(x),影象關於原點對稱。

  另外,從反比例函式的解析式可以得出,在反比例函式的影象上任取一點,向兩個座標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(2和-2)時的函式影象。

  當K>0時,反比例函式影象經過一,三象限,是減函式

  當K<0時,反比例函式影象經過二,四象限,是增函式

  反比例函式影象只能無限趨向於座標軸,無法和座標軸相交。

  知識點:

  1.過反比例函式圖象上任意一點作兩座標軸的垂線段,這兩條垂線段與座標軸圍成的矩形的面積為|k|。

  2.對於雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當於將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)

高一數學知識點總結人教版5篇3

  1.等比數列的有關概念

  (1)定義:

  如果一個數列從第2項起,每一項與它的前一項的比等於同一個常數(不為零),那麼這個數列就叫做等比數列.這個常數叫做等比數列的公比,通常用字母q表示,定義的表示式為an+1/an=q(n∈N_q為非零常數).

  (2)等比中項:

  如果a、G、b成等比數列,那麼G叫做a與b的等比中項.即:G是a與b的等比中項?a,G,b成等比數列?G2=ab.

  2.等比數列的有關公式

  (1)通項公式:an=a1qn-1.

  3.等比數列{an}的常用性質

  (1)在等比數列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_,則am·an=ap·aq=a.

  特別地,a1an=a2an-1=a3an-2=….

  (2)在公比為q的等比數列{an}中,數列am,am+k,am+2k,am+3k,…仍是等比數列,公比為qk;數列Sm,S2m-Sm,S3m-S2m,…仍是等比數列(此時q≠-1);an=amqn-m.

  4.等比數列的特徵

  (1)從等比數列的定義看,等比數列的任意項都是非零的,公比q也是非零常數.

  (2)由an+1=qan,q≠0並不能立即斷言{an}為等比數列,還要驗證a1≠0.

  5.等比數列的前n項和Sn

  (1)等比數列的前n項和Sn是用錯位相減法求得的,注意這種思想方法在數列求和中的運用.

  (2)在運用等比數列的前n項和公式時,必須注意對q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導致解題失誤.

高一數學知識點總結人教版5篇4

  【直線與方程】

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當直線與x軸平行或重合時,我們規定它的傾斜角為0度。因此,傾斜角的取值範圍是0°≤α<180°

  (2)直線的斜率

  ①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。當時,。當時,;當時,不存在。

  ②過兩點的直線的斜率公式:

  注意下面四點:

  (1)當時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關;

  (3)以後求斜率可不透過傾斜角而由直線上兩點的座標直接求得;

  (4)求直線的傾斜角可由直線上兩點的座標先求斜率得到。

高一數學知識點總結人教版5篇5

  空間幾何體表面積體積公式:

  1、圓柱體:表面積:2πRr+2πRh體積:πR2h(R為圓柱體上下底圓半徑,h為圓柱體高)

  2、圓錐體:表面積:πR2+πR[(h2+R2)的]體積:πR2h/3(r為圓錐體低圓半徑,h為其高,

  3、a-邊長,S=6a2,V=a3

  4、長方體a-長,b-寬,c-高S=2(ab+ac+bc)V=abc

  5、稜柱S-h-高V=Sh

  6、稜錐S-h-高V=Sh/3

  7、S1和S2-上、下h-高V=h[S1+S2+(S1S2)^1/2]/3

  8、S1-上底面積,S2-下底面積,S0-中h-高,V=h(S1+S2+4S0)/6

  9、圓柱r-底半徑,h-高,C—底面周長S底—底面積,S側—,S表—表面積C=2πrS底=πr2,S側=Ch,S表=Ch+2S底,V=S底h=πr2h

  10、空心圓柱R-外圓半徑,r-內圓半徑h-高V=πh(R^2-r^2)

  11、r-底半徑h-高V=πr^2h/3

  12、r-上底半徑,R-下底半徑,h-高V=πh(R2+Rr+r2)/313、球r-半徑d-直徑V=4/3πr^3=πd^3/6

  14、球缺h-球缺高,r-球半徑,a-球缺底半徑V=πh(3a2+h2)/6=πh2(3r-h)/3

  15、球檯r1和r2-球檯上、下底半徑h-高V=πh[3(r12+r22)+h2]/6

  16、圓環體R-環體半徑D-環體直徑r-環體截面半徑d-環體截面直徑V=2π2Rr2=π2Dd2/4

  17、桶狀體D-桶腹直徑d-桶底直徑h-桶高V=πh(2D2+d2)/12,(母線是圓弧形,圓心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母線是拋物線形)