高一數學教學計劃(合集15篇)
時間的腳步是無聲的,它在不經意間流逝,成績已屬於過去,新一輪的工作即將來臨,現在就讓我們制定一份計劃,好好地規劃一下吧。想學習擬定計劃卻不知道該請教誰?下面是小編為大家整理的高一數學教學計劃,僅供參考,希望能夠幫助到大家。
高一數學教學計劃1
一、學情分析
這節課是在學生已經學過的二維的平面直角座標系的基礎上的推廣,是以後學習空間向量等內容的基礎。
二、教學目標
1. 讓學生經歷用類比的數學思想方法探索空間直角座標系的建立方法,進一步體會數學概念、方法產生和發展的過程,學會科學的思維方法。
2. 理解空間直角座標系與點的座標的意義,掌握由空間直角座標系內的點確定其座標或由座標確定其在空間直角座標系內的點,認識空間直角座標系中的點與座標的關係。
3. 進一步培養學生的空間想象能力與確定性思維能力。
三、教學重點:在空間直角座標系中點的座標的確定。
四、教學難點:透過建立空間直角座標系利用點的座標來確定點在空間內的位置
五、教學過程
(一)、問題情景
1. 確定一個點在一條直線上的位置的方法。
2. 確定一個點在一個平面內的位置的方法。
3. 如何確定一個點在三維空間內的位置?
例:如圖,在房間(立體空間)內如何確定一個同學的頭所在位置?
在學生思考討論的基礎上,教師明確:確定點在直線上,透過數軸需要一個數;確定點在平面內,透過平面直角座標系需要兩個數。那麼,要確定點在空間內,應該需要幾個數呢?透過類比聯想,容易知道需要三個數。要確定同學的頭的位置,知道同學的頭到地面的距離、到相鄰的兩個牆面的距離即可。
(此時學生只是意識到需要三個數,還不能從座標的角度去思考,因此,教師在這兒要重點引導)
教師明晰:在地面上建立直角座標系xOy,則地面上任一點的位置只須利用x,y就可確定。為了確定不在地面內的電燈的位置,須要用第三個數表示物體離地面的高度,即需第三個座標z.因此,只要知道電燈到地面的距離、到相鄰的兩個牆面的距離即可。例如,若這個電燈在平面xOy上的射影的兩個座標分別為4和5,到地面的距離為3,則可以用有序陣列(4,5,3)確定這個電燈的位置(如圖26-3)。
這樣,仿照初中平面直角座標系,就建立了空間直角座標系O-xyz,從而確定了空間點的位置。
(二)、建立模型
1. 在前面研究的基礎上,先由學生對空間直角座標系予以抽象概括,然後由教師給出準確的定義。
從空間某一個定點O引三條互相垂直且有相同單位長度的數軸,這樣就建立了空間直角座標系O-xyz,點O叫作座標原點,x軸、y軸、z軸叫作座標軸,這三條座標軸中每兩條確定一個座標平面,分別稱為xOy平面,yOz平面,zOx平面。
教師進一步明確:
(1)在空間直角座標系中,讓右手拇指指向x軸的正方向,食指指向y軸的正方向,若中指指向z軸的正方向則稱這個座標系為右手座標系,課本中建立的座標系都是右手座標系。
(2)將空間直角座標系O-xyz畫在紙上時,x軸與y軸、x軸與z軸成135,而y軸垂直於z軸,y軸和z軸的單位長度相等,但x軸上的單位長度等於y軸和z軸上的單位長度的 ,這樣,三條軸上的單位長度直觀上大致相等。
2. 空間直角座標系O-xyz中點的座標。
思考:在空間直角座標系中,空間任意一點A與有序陣列(x,y,z)有什麼樣的對應關係?
在學生充分討論思考之後,教師明確:
(1)過點A作三個平面分別垂直於x軸,y軸,z軸,它們與x軸、y軸、z軸分別交於點P,Q,R,點P,Q,R在相應數軸上的座標依次為x,y,z,這樣,對空間任意點A,就定義了一個有序陣列(x,y,z)。
(2)反之,對任意一個有序陣列(x,y,z),按照剛才作圖的相反順序,在座標軸上分別作出點P,Q,R,使它們在x軸、y軸、z軸上的座標分別是x,y,z,再分別過這些點作垂直於各自所在的座標軸的平面,這三個平面的交點就是所求的點A.
這樣,在空間直角座標系中,空間任意一點A與有序陣列(x,y,z)之間就建立了一種一一對應關係:A (x,y,z)。
教師進一步指出:空間直角座標系O-xyz中任意點A的座標的概念
對於空間任意點A,作點A在三條座標軸上的射影,即經過點A作三個平面分別垂直於x軸、y軸和z軸,它們與x軸、y軸、z軸分別交於點P,Q,R,點P,Q,R在相應數軸上的座標依次為x,y,z,我們把有序陣列(x,y,z)叫作點A的座標,記為A(x,y,z)。
(三)、例 題 與 練 習
1. 課本135頁例1.
注意:在分析中緊扣座標定義,強調三個步驟,第一步從原點出發沿x軸正方向移動5個單位,第二步沿與y軸平行的方向向右移動4個單位,第三步沿與z軸平行的方向向上移動6個單位(如圖26-5)。
2. 課本135頁例2
探究: (1)在空間直角座標系中,座標平面xOy,xOz,yOz上點的座標有什麼特點?
(2)在空間直角座標系中,x軸、y軸、z軸上點的座標有什麼特點?
解:(1)xOy平面、xOz平面、yOz平面內的點的座標分別形如(x,y,0),(x,0,z),(0,y,z)。
(2)x軸、y軸、z軸上點的座標分別形如(x,0,0),(0,y,0),(0,0,z)。
3. 已知長方體ABCD-ABCD的邊長AB=12,AD=8,AA=5,以這個長方體的頂點A為座標原點,射線AB,AD,AA分別為x軸、y軸和z軸的正半軸,建立空間直角座標系,求這個長方體各個頂點的座標。
注意:此題可以由學生口答,教師點評。
解:A(0,0,0),B(12,0,0),D(0,8,0),A(0,0,5),C(12,8,0),B(12,0,5),D(0,8,5),C(12,8,5)。
討論:若以C點為原點,以射線CB,CD,CC方向分別為x,y,z軸的正半軸,建立空間直角座標系,那麼各頂點的座標又是怎樣的呢?
得出結論:建立不同的座標系,所得的同一點的座標也不同。
[練 習]
1. 在空間直角座標系中,畫出下列各點:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2)。
2. 已知:長方體ABCD-ABCD的邊長AB=12,AD=8,AA=7,以這個長方體的頂點B為座標原點,射線AB,BC,BB分別為x軸、y軸和z軸的正半軸,建立空間直角座標系,求這個長方體各個頂點的座標。
3. 寫出座標平面yOz上yOz平分線上的點的座標滿足的條件。
(四)、拓展延伸
分別寫出點(1,1,1)關於各座標軸和各個座標平面對稱的點的座標。
六、評價設計
1、 練習 : 課本P136. 1、2、3
2、 課堂作業: 課本P138. 1、2
高一數學教學計劃2
一 指導思想
為了使學生在九年義務教育數學課程的基礎上,進一步提高作為未來公民所必要的數學素養,以滿足個人發展與社會進步的需要。具體目標如下:
1.提高空間想像、抽象概括、推理論證、運算求解、資料處理等基本能力。
2.提高數學地提出、分析和解決問題(包括簡單的實際問題)的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力
3.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
4.提高學習的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
二 學情分析
1. 基本情況:班共人,男生人,女生人;本班相對而言,數學尖子約人,中上等生約人,中等生約人,中下生約 人,後進生約人。
2.我所執教的215班均屬普高班,學生自覺性差,自我控制能力弱,因此在教學中需時時提醒學生,培養其自覺性。同時,由於初中課改的原因,高中教材與初中教材銜接力度不夠,需在新授時適機補充一些內容。因此時間上可能仍然吃緊。同時,其底子薄弱,因此在教學時只能注重基礎再基礎,爭取每一堂課落實一個知識點,掌握一個知識點。
三 教材分析
我們採用的教材是人教版必修教材,本冊教材共分兩章:第四章《三角函式》和第五章《平面向量》。三角函式的主要內容有:任意角的三角函式概念、弧度制、同角三角函式間的關係、誘導公式、兩角和與差的三角函式、二倍角的三角函式以及三角函式的圖象和性質、已知三角函式值求角等。難點是弧度制的概念、綜合運用本章公式進行簡單三角函式式的化簡及恆等式的證明週期函式的概念,函式y=Asin(x+)的圖象與正弦曲線的關係。平面向量主要內容是向量及其運算和解斜三角形,向量的幾何表示和座標表示、向量的線性運算,平面向量的數量積,平面兩點間的距離公式,線段的定比分點和中點座標公式,平移公式,解斜三角形是本章的重點,而向量運演算法則的理解和運用,已知兩邊和其中一邊的對角解斜三角形等是本章的難點。
四 教法分析
在教學過程中儘量做到以下幾個方面:
1. 選取與內容密切相關的,典型的,豐富的和學生熟悉的素材,用生動活潑的語言,創設能夠體現數學的概念和結論,數學的思想和方法,以及數學應用的學習情境,使學生產生對數學的親切感,引發學生看個究竟的衝動,以達到培養其興趣的目的。
2. 透過觀察,思考,探究等欄目,引發學生的思考和探索活動,切實改進學生的學習方式。
3. 在教學中強調類比,推廣,特殊化,化歸等數學思想方法,儘可能養成其邏輯思維的習慣。
五 教學及輔導措施
1. 激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2. 注意從例項出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3. 加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善於分析問題的習慣,進行辨證唯物主義教育。
4. 抓住公式的推導和內在聯絡;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5. 自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6. 重視數學應用意識及應用能力的培養。
六 優、差生名單及輔導措施
1. 對於優生:學生自願成立興趣小組,興趣小組可以在老師的指導下由學生自己不定期的開展活動,圍繞數學競賽拓展他們的知識面,加深對所學知識的理解和應用,在原有基礎上,穩定班級在數學學習鐘的尖子學生,進一步培養他們自主學習的意識。
2. 對於待發展生:對於成績較差的學生,針對他們的基礎差異和個性差異,耐心細緻的進行個別輔導,有問題隨時解決,並多予以鼓勵。在作業中體現分層。儘量做到因材施教。
七 教學進度安排
周 次 | 課時 | 內 容 | 重 點、難 點 |
第1周 | 5 | 任意角和弧度制(2) 任意角的三角函式(3) | 瞭解任意角的概念和弧度制,能進行弧度與角度的互化。任意角三角函式的定義。 |
第2周 | 5 | 同角三角函式的基本關係式(3) 三角函式的誘導公式(2) | 誘導公式的探究。運用誘導公式。 |
第3周 | 5 | 兩角和與差的正弦、餘弦、正切 (5) | 兩角和與差的公式及其應用與求值、化簡 |
第4周 | 5 | 二倍角的正弦、餘弦、正切 (3) 正、餘弦函式的圖象(2) | 三角函式的倍角公式、和差化積公式 正、餘弦函式圖象的畫法 |
第5周 | 5 | 三角函式圖象與性質(4) | 三角函式的圖象及其性質。函式思想。 |
第6周 | 5 | 函式y=sin(+)的圖象(2)、三角函式模型的簡單應用(2) | 用引數思想討論圖象的變換過程。用三角模型解決一些具有周期變化規律的實際問題。難點:實際問題抽象為三角函式模型 |
第7周 | 5 | 正切函式的圖象和性質(3) 已知三角函式值求角(2) | 正切函式的圖象和性質 反三角函式的表示 |
第8周 | 5 | 三角函式單元複習 | 知識點的複習+練習卷 |
第9周 | 5 | 平面向量的實際背景及基本概念(2)、平面向量的線性運算(2) | 向量的概念。相等向量的概念。向量的幾何表示。向量加、減法的運算及幾何意義。向量數乘運算及幾何意義。 |
第10周 | 5 | 平面向量的基本定理及座標表示(2) 平面向量的數量積(2) | 平面向量基本定理。會用平面向量數量積的表示向量的模與夾角。 |
第11周 | 5 | 平面向量的應用舉例(2) | 用向量方法解決實際問題的方法。向量方法解決幾何問題的三步曲。 |
第12周 | 5 | 向量平移、正弦定理、餘弦定理 | 向量平移的公式 |
第13周 | 5 | 簡單的三角恆等變換(3) 第三章小結(1) | 以11個公式為依據,推導和差化積、積化和差等公式,會進行三角變換。 |
第14周 | 5 | 期末複習 | |
第15周 | 5 | 期末複習 | 分章歸納複習+3套模擬測試 |
高一數學教學計劃3
一、指導思想
準確把握《教學大綱》和《考試大綱》的各項基本要求,立足於基礎知識和基本技能的教學,注重滲透數學思想和方法。針對學生實際,不斷研究數學教學,改進教法,指導學法,奠定立足社會所需要的必備的基礎知識、基本技能和基本能力,著力於培養學生的創新精神,運用數學的意識和能力,奠定他們終身學習的基礎。
二、教學建議
1、深入鑽研教材。以教材為核心,深入研究教材中章節知識的內外結構,熟練把握知識的邏輯體系,細緻領悟教材改革的精髓,逐步明確教材對教學形式、內容和教學目標的影響。
2、準確把握新大綱。新大綱修改了部分內容的教學要求層次,準確把握新大綱對知識點的基本要求,防止自覺不自覺地對教材加深加寬。同時,在整體上,要重視數學應用;重視數學思想方法的滲透。如增加閱讀材料(開闊學生的視野),以拓寬知識的廣度來求得知識的深度。
3、樹立以學生為主體的教育觀念。學生的發展是課程實施的出發點和歸宿,教師必須面向全體學生因材施教,以學生為主體,構建新的認識體系,營造有利於學生學習的氛圍。
4、發揮教材的多種教學功能。用好章頭圖,激發學生的學習興趣;發揮閱讀材料的功能,培養學生用數學的意識;組織好研究性課題的教學,讓學生感受社會生活之所需;小結和複習是培養學生自學的好材料。
5、落實課外活動的內容。組織和加強數學興趣小組的活動內容。
三、教學內容
第一章集合與函式概念
1.透過例項,瞭解集合的含義,體會元素與集合的屬於關係。
2.能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用。
3.理解集合之間包含與相等的含義,能識別給定集合的子集。
4.在具體情境中,瞭解全集與空集的含義。
5.理解兩個集合的並集與交集的含義,會求兩個簡單集合的並集與交集。
6.理解在給定集合中一個子集的補集的含義,會求給定子集的補集。
7.能使用Venn圖表達集合的關係及運算,體會直觀圖示對理解抽象概念的作用。
8.透過豐富例項,進一步體會函式是描述變數之間的依賴關係的重要數學模型,在此基礎上學習用集合與對應的語言來刻畫函式,體會對應關係在刻畫函式概念中的作用;瞭解構成函式的要素,會求一些簡單函式的定義域和值域;瞭解對映的概念。
9.在實際情境中,會根據不同的需要選擇恰當的方法(如影象法、列表法、解析法)表示函式。
10.透過具體例項,瞭解簡單的分段函式,並能簡單應用。
11.透過已學過的函式特別是二次函式,理解函式的單調性、最大(小)值及其幾何意義;結合具體函式,瞭解奇偶性的含義。
12.學會運用函式圖象理解和研究函式的性質。
課時分配(14課時)
第二章基本初等函式(I)
1.透過具體例項,瞭解指數函式模型的實際背景。
2.理解有理指數冪的含義,透過具體例項瞭解實數指數冪的意義,掌握冪的運算。
3.理解指數函式的概念和意義,能借助計算器或計算機畫出具體指數函式的圖象,探索並理解指數函式的單調性與特殊點。
4.在解決簡單實際問題過程中,體會指數函式是一類重要的函式模型。
5.理解對數的概念及其運算性質,知道用換底公式能將一般對數轉化成自然對數或常用對數;透過閱讀材料,瞭解對數的發現歷史以及其對簡化運算的作用。
6.透過具體例項,直觀瞭解對數函式模型所刻畫的數量關係,初步理解對數函式的概念,體會對數函式是一類重要的函式模型;能借助計算器或計算機畫出具體對數函式的圖象,探索並瞭解對數函式的單調性和特殊點。
7.透過例項,瞭解冪函式的概念;結合函式的圖象,瞭解它們的變化情況。
課時分配(15課時)
第三章函式的應用
1.結合二次函式的圖象,判斷一元二次方程根的存在性及根的個數,從而瞭解函式的零點與方程根的聯絡。
根據具體函式的圖象,能夠藉助計算器用二分法求相應方程的近似解,瞭解這種方法是求方程近似解的常用方法。
2.利用計算工具,比較指數函式、對數函式以及冪函式增長差異;結合例項體會直線上升、指數爆炸、對數增長等不同函式型別增長的含義。
3.收集一些社會生活中普遍使用的函式模型(指數函式、對數函式、冪函式、分段函式等)的例項,瞭解函式模型的廣泛應用。
4.根據某個主題,收集17世紀前後發生的一些對數學發展起重大作用的歷史事件和人物(開普勒、伽利略、笛卡兒、牛頓、萊布尼茨、尤拉等)的有關資料或現實生活中的函式例項,採取小組合作的方式寫一篇有關函式概念的形成、發展或應用的文章,在班級中進行交流。
課時分配(8課時)
3.1.1 | 方程的根與函式的零點 | 約1課時 | 10月25日 |
3.1.2 | 用二分法求方程的近似解 | 約2課時 | 10月26日27日 |
3.2.1 | 幾類不同增長的函式模型 | 約2課時 | 10月30日 | 11月3日 |
3.2.2 | 函式模型的應用例項 | 約2課時 | |
小結 | 約1課時 |
考生只要在全面複習的基礎上,抓住重點、難點、易錯點,各個擊破,夯實基礎,規範答題,一定會穩中求進,取得優異的成績。
高一數學教學計劃4
一、具體目標:
1.獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,瞭解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。透過不同形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2.提高空間想像、抽象概括、推理論證、運算求解、資料處理等基本能力。
3.提高數學地提出、分析和解決問題(包括簡單的實際問題的能力,數學表達和交流的能力,發展獨立獲取數學知識的能力。
4.發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出判斷。
5.提高學習數學的興趣,樹立學好數學的信心,形成鍥而不捨的鑽研精神和科學態度。
6.具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學
二、本學期要達到的教學目標
1.雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其內容反映出來的數學思想和方法。在基本技能方面能按照一定的程式與步驟進行運算、處理資料、能使用計數器及簡單的推理、畫圖。
2.能力培養:
能運用數學概念、思想方法,辨明數學關係,形成良好的思維品質;會根據法則、公式正確的進行運算、處理資料,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,形成數學的意思;從而透過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3. 思想教育:
三、進度授課計劃及進度表(略)
高中是人生中的關鍵階段,大家一定要好好把握高中,編輯老師為大家整理的高中一年級上學期數學教學計劃,希望大家喜歡。
高一數學教學計劃5
本學期擔任高一5、6兩班的數學教學工作,兩班學生共有110人,初中的基礎參差不齊,但兩個班的學生整體水平還能夠;部分學生學習習慣不好,很多學生不能正確評價自我,這給教學工作帶來了必須的難度,為把本學期教學工作做好,制定如下教學工作計劃。
一、教學目標、
(一)情意目標
(1)經過分析問題的方法的教學,培養學生的學習的興趣。
(2)供給生活背景,經過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。
(3)在探究函式、等差數列、等比數列的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維本事的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)本事要求
1、培養學生記憶本事。
(1)經過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體資料的記憶。
(3)經過揭示立體集合、函式、數列有關概念、公式和圖形的對應關係,培養記憶本事。
2、培養學生的運算本事。
(1)經過機率的訓練,培養學生的運算本事。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算本事。
(3)經過函式、數列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經過一題多解、一題多變培養正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算本事。
3、培養學生的思維本事。
(1)經過對簡易邏輯的教學,培養學生思維的周密性及思維的邏輯性。
(2)經過不等式、函式的一題多解、多題一解,培養思維的靈活性和敏捷性,發展發散思維本事。
(3)經過不等式、函式的引伸、推廣,培養學生的創造性思維。
(4)加強知識的橫向聯絡,培養學生的數形結合的本事。
(5)經過典型例題不一樣思路的分析,培養思維的靈活性,是學生掌握轉化思想方法。
(三)知識目標
1、集合、簡易邏輯
(1)理解集合、子集、補訂、交集、交集的概念、瞭解空集和全集的意義、瞭解屬於、包含、相等關係的意義、掌握有關的術語和符號,並會用它們正確表示一些簡單的集合。
(2)理解邏輯聯結詞"或"、"且"、"非"的含義、理解四種命題及其相互關係、掌握充分條件、必要條件及充要條件的意義。
(3)掌握一元二次不等式、絕對值不等式的解法。
2、函式
(1)瞭解對映的概念,理解函式的概念。
(2)瞭解函式的單調性、奇偶性的概念,掌握確定一些簡單函式的單調性、奇偶性的方法。
(3)瞭解反函式的概念及互為反函式的函式影象間的關係,會求一些簡單函式的反函式。
(4)理解分數指數冪的概念,掌握有理指數冪的運算性質,掌握指數函式的概念、影象和性質。
(5)理解對數的概念,掌握對數的運算性質、掌握對數函式的概念、影象和性質。
(6)能夠運用函式的性質、指數函式和對數函式的性質解決某些簡單的實際問題。
3、數列
(1)理解數列的概念,瞭解數列通項公式的意義,瞭解遞推公式是給出數列的一種方法,並能根據遞推公式寫出數列的前幾項。
(2)理解等差數列的概念,掌握等差數列的通項公式與前n項和公式,並能解決簡單的實際問題。
(3)理解等比數列的概念,掌握等比數列的通項公式與前n項和公式,並能解決簡單的實際問題。
二、教學重點
1、集合、子集、補集、交集、並集、一元二次不等式的解法
四種命題、充分條件和必要條件、
2、對映、函式、函式的單調性、反函式、指數函式、對數函式、函式的應用。
3、等差數列及其通項公式、等差數列前n項和公式。
等比數列及其通項公式、等比數列前n項和公式。
三、教學難點
1、四種命題、充分條件和必要條件
2、反函式、指數函式、對數函式
3、等差、等比數列的性質
四、工作措施
抓好課堂教學,提高教學效益。課堂教學是教學的主要環節,所以,抓好課堂教學是教學之根本,是大面積提高數學成績的主途徑。
(1)、紮實落實團體備課,經過團體討論,抓住教學資料的實質,構成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。
(2)、加大課堂教改力度,培養學生的自主學習本事。最有效的學習是自主學習,所以,課堂教學要大力培養學生自主探究的精神,經過“知識的產生,發展”,逐步構成知識體系;經過“知識質疑、展活”遷移知識、應用知識,提高本事。同時要養成學生良好的學習習慣,不斷提高學生的數學素養,從而提高數學素養,並大面積提高數學成績。
高一數學教學計劃6
一、指導思想
本學期高一備課組以學校工作計劃為指導,以提高教學質量為目標,以最佳化課堂教學為中心,團結合作,努力提高思想素質和業務素質,團結合作,互相學習,認真備好課,上好每一節課,並結合新教材的特點,開展研究性學習的活動,在教學中,抓好基礎知識教學,著重學生本事的培養,打好基礎,全面提高,為來年高考作好充分的準備,爭取優異的成績。
二、教學目標、
(一)情意目標
(1)經過分析問題的方法的教學,培養學生的學習的興趣。
(2)供給生活背景,經過數學建模,讓學生體會數學就在身邊,培養學數學用數學的意識。(3)在探究三角函式的性質,體驗獲得數學規律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識
(4)基於情意目標,調控教學流程,堅定學習信念和學習信心。
(5)還時空給學生、還課堂給學生、還探索和發現權給學生,給予學生自主探索與合作交流的機會,在發展他們思維本事的同時,發展他們的數學情感、學好數學的自信心和追求數學的科學精神。
(6)讓學生體驗“發現——挫折——矛盾——頓悟——新的發現”這一科學發現歷程法。
(二)本事要求
1、培養學生記憶本事。
(1)經過定義、命題的總體結構教學,揭示其本質特點和相互關係,培養對數學本質問題的背景事實及具體資料的記憶。
(3)經過揭示三角函式有關概念、公式和圖形的對應關係,培養記憶本事。
2、培養學生的運算本事。
(1)經過機率的訓練,培養學生的運算本事。
(2)加強對概念、公式、法則的明確性和靈活性的教學,培養學生的運算本事。
(3)經過演算法初步,1演算法步驟2程式框圖(起始框,確定框,附值框,)3silab語言(順序,條件語句,迴圈語句)。第二部分,統計,第三步分,機率,古典概型,幾何概型。的教學,提高學生是運算過程具有明晰性、合理性、簡捷性本事。
(4)經過一題多解、一題多變培養正確、迅速與合理、靈活的運算本事,促使知識間的滲透和遷移。
(5)利用數形結合,另闢蹊徑,提高學生運算本事。
三、具體措施
1、期中考前上好第一冊(必修3),期中考後完成好必修4
2、抓好數學補差,培優活動各班在星期1或星期4的午時
3、立足於教材。
4、要求學生完成課後練習及每一章課後習題
5、我們組還繼續學習了《課堂教學論》,《現代教育技術》,努力學習多媒體課件的製作。
6、繼續認真開展師徒結對活動,以老帶新。師徒間經常聽課交流,認真評課。集中備課,共同商討教材等。
7抓好競賽輔導,時間定於週三、週四的提前時間,週六的午時1點到3點;任教教師:高一全體數學教師。
8、段統一考試在週日或者週三的晚自修時間,每隔2週考一次;
9、上學期必修4的學分認定考試補考及落實工作;
10、響應學校教務處的備課計劃安排,督促組員落實工作;
11、抓好團體備課
高一數學教學計劃7
高一年級學生往往對課程增多、課堂學習容量加大不適應,顧此失彼,精力分散,使聽課效率下降,要重視聽法的指導。數學網高中頻道整理了高一數學下冊教學計劃,希望能幫助教師授課!
本學期高一數學備課組的工作緊緊圍繞學校、教科處及教研組的計劃安排來開展,以教學改革為動力、以學校建立為前提、以提高課堂效率為目的、以自主教育為模式、以現代資訊科技為手段、以培養學生的創新能力為目標,全面改進教育教學方法,更新教育觀念,改變傳統教學模式,培養學生綜合素質,搞好本學期工作。
一、指導思想
以教研組工作計劃為指導,按照均衡、優質、高效原則,精誠團結,和諧創新,加強科組建設,提高高一數學備課組的整體實力;努力完成本學期的教學目標,進一步提高作為未來公民所必要的數學素養,以滿足學生髮展與社會進步的需要。這學期的工作重點是繼續進行新課標和新教材的研究,要著重抓好差生輔導和尖子生的培養,讓絕大部分學生跟上教學進度。
二、工作思路
1.在學校科研處和教務處的領導下,有計劃地組織好全組教師的學習與培訓工作,特別是搞好新課程標準和新教材的學習、研究和交流,落實學校的辦學理念。推廣現代教育科研成果,定期開展多種形式的教研活動。
2.以組風建設為主線,以新課程標準為指導,以教法探索為重點,以構建主動發展型課堂教學模式為主題,以提高隊伍素質,提高課堂效率,提高教學質量為目的。深化課堂教學改革,努力改善教與學的方式。
3.教學研究要以集體備課為基礎,以作課、聽課、評課活動以及出考卷活動為載體,以課題研究、論文、案例撰寫為提高,在研究狀態下理性的工作。培養本組教師養成教學反思的習慣,
三、教材分析(結構系統、單元內容、重難點)
必修5:
第一章:解三角形;重點是正弦定理與餘弦定理;難點是正弦定理與餘弦定理的應用;
第二章:數列;重點是等差數列與等比數列的前n項的和;難點是等差數列與等比數列前n項的和與應用;
第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與基本不等式;難點是二元一次不等式(組)及應用;
必修2:
第一章:立體幾何初步。重點是空間幾何體的三檢視和直觀圖及表面積與體積,直線與平面平行及垂直的判定及其性質;難點是空間幾何體的三檢視,直線與平面平行及垂直的判定及其性質;
第二章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當的直線方程求解題目;圓與方程;重點是圓的方程及直線與圓的位置關係;難點是直線與圓的位置關係。
四、學情分析
經過一學期的觀察發現學生的基礎知識水平、學習自覺性與基本學習方法比較欠缺,學生心理不穩定,空間思維、抽象思維、邏輯思維較差,而本學期所要學習的內容包含了高中數學中重要而難學的數列、不等式、立體幾何部分,因而教學時儘可能以課本為本,注重基礎和規範,不隨意拔高難度,努力使絕大部分學生打好三基。教學時在完成市教學進度的前提下,儘可能的放慢速度,確保絕大部分學生的學習質量。平時教學中老師要注意不斷鼓勵和欣賞學生的優點和進步,使學生不斷體驗到學習數學的樂趣。平時測試要注重考查三基,嚴格控制難度,使絕大部分學生及格,使學生體驗到進步和成功的喜悅。同時需進一步加強學法指導,多於學生進行情感交流。
五、工作目標
1、狠抓教學常規和學習常規的貫徹落實。在數學教學研究中努力做到三主(教學研究以學習理論為主導、大綱教材課程標準為主體、探索教學模式為主線)和三有(教學研究要對教學實踐有指導、對教學質量有促進、對教師有提高)。
2、加強現代教育教學理論的學習,積極進行課堂教學改革試驗、逐步形成本學科特色,把我組建設成一個團結協作、富有開拓創新精神的先進集體。
3、把對新課程標準的學習與對新教材的研究結合起來,力求使每一位數學老師都能較好地領會新課程標準的基本理念和目標,較好地把握數學學習內容中有關數感、符號感、空間觀念、統計觀念、應用意識、推理能力等核心概念的內涵和要求,初步掌握所教教材的結構特點、每章每節教材的地位、作用和目標要求。
4、認真做好義務教育數學實驗教材和高中新教材的階段總結,加強教法的研究,注意總結和發現典型的教學案例,積極組織本組教師做好資料、資訊收集工作,撰寫教育教學論文、案例,爭取在全國等各級論文評比中獲獎。
六、具體措施:
1、激發學生的學習興趣。由數學活動、故事、吸引人的課、合理的要求、師生談話等途徑樹立學生的學習信心,提高學習興趣,在主觀作用下上升和進步。
2、注意從例項出發,從感性提高到理性;注意運用對比的方法,反覆比較相近的概念;注意結合直觀圖形,說明抽象的知識;注意從已有的知識出發,啟發學生思考。
3、加強培養學生的邏輯思維能力就解決實際問題的能力,以及培養提高學生的自學能力,養成善於分析問題的習慣,進行辨證唯物主義教育。
4、抓住公式的推導和內在聯絡;加強複習檢查工作;抓住典型例題的分析,講清解題的關鍵和基本方法,注重提高學生分析問題的能力。
5、自始至終貫徹教學四環節,針對不同的教材內容選擇不同教法。
6、重視數學應用意識及應用能力的培養。
7、積極做好集體備課工作,達到內容統一、進度統一、目標統一、例習題統一、資料統一、測試統一;上好每一節課,及時對學生的學習進行觀察與指導;課後進行有效的輔導;進行有效的課堂反思。
高一數學教學計劃8
新學期已開始,為使新學期的工作有條不紊的進行,使教學工作更加科學合理,使學生對知識的接收更加得心應手,特訂新學期個人教學計劃如下
一,指導思想
加強現代教育理論的學習,提高自身的素質,轉變教育觀念,以教育科研為先導,以培養學生的創新精神和實踐能力為重點,深化課堂教學改革,大力推進素質教育。
二,教材分析
本冊教材具有以下幾個明顯的特點:
1。為學生的數學學習構築起點
教科書提供了大量數學活動的線索,作為所有學生從事數學學習的出發點。目的是使學生能夠在所提供的學習情景中,透過探索與交流等活動,獲得必要的發展。
2,向學生提供現實,有趣,富有挑戰性的學習素材
教科書從學生實際出發,用他們熟悉或感興趣的問題情景引入學習主題,並提供了眾多有趣而富有數學含義的問題,以展開數學探究。
3,為學生提供探索,交流的時間與空間
教科書依據學生已有的知識背景和活動經驗,提供了大量的操作,思考與交流的機會,幫助學生透過思考與交流,梳理所學的知識,建立符合個體認知特點的知識結構。
4,展現數學知識的形成與應用過程
教科書採用"問題情境—建立模型—解釋,應用與拓展"的模式展開,有利於學生更好地理解數學,應用數學,增強學好數學的信心。
5,滿足不同學生的發展需求
教科書中"讀一讀"給學生以更多瞭解數學,研究數學的機會。教科書中的習題分為兩類:一類面向全體學生;另一類面向有更多數學需求的學生。
三,教材的重點和難點
本冊教材從內容上看,教學重點是三角形和四邊形的性質定理
和判定定理的應用以及一元二次方程的應用。教學難點是對反
比例函式的理解及應用;用試驗或模擬試驗的方法估計一些復
雜的隨機時間發生的機率。
四,教學措施:
1,根據學生實際,創造性地使用教材,積極開發和利用各種教學資源,為學生提供豐富多彩的學習素材。
2,加強直觀教學,充分利用教具,學具等多媒體教學,以豐富學生感知認識物件的途徑,促使他們更加樂意接近數學,更好地理解數學。
3,關注學生的個體差異,有效的實施有差異的教學,使每個學生都能得到充分的發展。
4,加強學生學習習慣的培養,主要培養學生的書寫,認真分析問題的習慣。同時注意學習態度的培養。
五,時間安排
4月1日——4月20日一元二次方程
5月16日——5月31日反比例函式
6月1日——6月10日頻率與機率
6月11日——7月11日複習考試
>高中數學教學計劃10
本學期我擔任高一(5)、(16)班的數學教學工作,本學期的教學工作計劃如下。
一、指導思想:
(1)隨著素質教育的深入展開,《課程方案》提出了“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。
(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。
(3)根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4)使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯絡和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會透過收集資訊、處理資料、製作影象、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二、學情分析及相關措施:
高一作為起始年級,作為從義務階段邁入應試征程的適應階段,該有的是一份執著。他的特殊性就在於它的跨越性,理想的期盼與學法的突變,難度的加強與惰性的生成等等矛盾衝突伴隨著高一新生的成長,面對新教材的我們也是邊摸索邊改變,樹立新的教學理念,並落實在課堂教學的各個環節,才能不負眾望。我們要從學生的認識水平和實際能力出發,研究學生的心理特徵,做好初三與高一的銜接工作,幫助學生解決好從初中到高中學習方法的過渡。從高一起就注意培養學生良好的數學思維方法,良好的學習態度和學習習慣,以適應高中領悟性的學習方法。具體措施如下:
(1)注意研究學生,做好初、高中學習方法的銜接工作。
(2)集中精力打好基礎,分項突破難點。所列基礎知識依據課程標準設計,著眼於基礎知識與重點內容,要充分重視基礎知識、基本技能、基本方法的教學,為進一步的學習打好堅實的基礎,切勿忙於過早的拔高,上難題。同時應放眼高中教學全域性,注意高考命題中的知識要求,能力要求及新趨勢,這樣才能統籌安排,循序漸進,使高一的數學教學與高中教學的全域性有機結合。。
(3)培養學生解答考題的能力,透過例題,從形式和內容兩方面對所學知識進行能力方面的分析,引導學生了解數學需要哪些能力要求。
(4)讓學生透過單元考試,檢測自己的實際應用能力,從而及時總結經驗,找出不足,做好充分的準備
(5)抓好尖子生與後進生的輔導工作,提前展開數學奧競選拔和數學基礎輔導。
(6)注意運用現代化教學手段輔助數學教學;注意運用投影儀、電腦軟體等現代化教學手段輔助教學,提高課堂效率,激發學生學習興趣。
高一數學教學計劃9
一.指導思想:
(1)隨著素質教育的深入展開,《新課程標準》提出了“教育要面向世界,面向未來,面向現代化”和“教育必須為社會主義現代化建設服務,必須與生產勞動相結合,培養德、智、體等方面全面發展的社會主義事業的建設者和接班人”的指導思想和課程理念和改革要點。使學生掌握從事社會主義現代化建設和進一步學習現代化科學技術所需要的數學知識和基本技能。其內容包括代數、幾何、三角的基本概念、規律和它們反映出來的思想方法,機率、統計的初步知識,計算機的使用等。
(2)培養學生的邏輯思維能力、運算能力、空間想象能力,以及綜合運用有關數學知識分析問題和解決問題的能力。使學生逐步地學會觀察、分析、綜合、比較、抽象、概括、探索和創新的能力;運用歸納、演繹和類比的方法進行推理,並正確地、有條理地表達推理過程的能力。
(3) 根據數學的學科特點,加強學習目的性的教育,提高學生學習數學的自覺心和興趣,培養學生良好的學習習慣,實事求是的科學態度,頑強的學習毅力和獨立思考、探索創新的精神。
(4) 使學生具有一定的數學視野,逐步認識數學的科學價值、應用價值和文化價值,形成批判性的思維習慣,崇尚數學的理性精神,體會數學的美學意義,理解數學中普遍存在著的運動、變化、相互聯絡和相互轉化的情形,從而進一步樹立辯證唯物主義和歷史唯物主義世界觀。
(5)學會透過收集資訊、處理資料、製作影象、分析原因、推出結論來解決實際問題的思維方法和操作方法。
(6)本學期是高一的重要時期,教師承擔著雙重責任,既要不斷夯實基礎,加強綜合能力的培養,又要滲透有關高考的思想方法,為三年的學習做好準備。
二.學情分析:
我校高一學生在數學學習上存在不少問題,這些問題主要表現在以下方面: 1、進一步學習條件不具備.高中數學與初中數學相比,知識的深度、
廣度,能力要求都是一次飛躍.這就要求必須掌握基礎知識與技能為進一步學習作好準備。高中數學很多地方難度大、方法新、分析能力要求高.如二次函式在閉區間上的最值問題,函式值域的求法,實根分佈與參變數方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應用題及實際應用問題等.客觀上這些觀點就是分化點,有的內容還是高初中教材都不講的脫節內容,如不採取補救措施,查缺補漏,分化是不可避免的。
2、被動學習.許多同學進入高中後,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉,沒有掌握學習主動權.表現在不定計劃,坐等上課,課前沒有預習,對老師要上課的內容不瞭解,上課忙於記筆記,沒聽到“門道”,沒有真正理解所學內容。不知道或不明確學習數學應具有哪些學習方法和學習策略;老師上課一般都要講清知識的來龍去脈,剖析概念的內涵,分析重點難點,突出思想方法.而一部分同學上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課後又不能及時鞏固、總結、尋找知識間的聯絡,只是趕做作業,亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背.也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結果是事倍功半,收效甚微。
3、對自己學習數學的好差(或成敗)不瞭解,更不會去進行反思總結,甚至根本不關心自己的成敗。
4、不能計劃學習行動,不會安排學習生活,更不能調節控制學習行為,不能隨時監控每一步驟,對學習結果不會正確地自我評價。
5、不重視基礎.一些“自我感覺良好”的同學,常輕視基本知識、基本技能和基本方法的學習與訓練,經常是知道怎麼做就算了,而不去認真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質”,陷入題海.到正規作業或考試中不是演算出錯就是中途“卡殼”。 此外,還有許多學生數學學習興趣不濃厚,不具備應用數學的意識和能力,對數學思想方法重視不夠或掌握情況不好,缺乏將實際問題轉化為數學問題的能力,缺乏準確運用數學語言來分析問題和表達思想的能力,思維缺乏靈活性、批判性和發散性等。所有這些都嚴重製約著學生數學成績的提高
三、教學目標與要求
必修1,主要涉及兩章內容:
第一章:集合
透過本章學習,使學生感受到用集合表示數學內容時的簡潔性、準確性,幫助學生學會用集合語言表示數學物件,為以後的學習奠定基礎。
1.瞭解集合的含義,體會元素與集合的屬於關係,並初步掌握集合的表示方法;
2.理解集合間的包含與相等關係,能識別給定集合的子集,瞭解全集與空集的含義;
3.理解補集的含義,會求在給定集合中某個集合的補集;
4.理解兩個集合的並集和交集的含義,會求兩個簡單集合的並集和交集;
5.滲透數形結合、分類討論等數學思想方法;
6.在引導學生觀察、分析、抽象、類比得到集合與集合間的關係等數學知識的過程中,培養學生的思維能力。
第二章:函式的概念與基本初等函式Ⅰ
教學本章時應立足於現實生活從具體問題入手,以問題為背景,按照“問題情境—數學活動—意義建構—數學理論—數學應用—回顧反思”的順序結構,引導學生透過實驗、觀察、歸納、抽象、概括,數學地提出、分析和解決問題。透過本章學習,使學生進一步感受函式是探索自然現象、社會現象基本規律的工具和語言,學會用函式的思想、變化的觀點分析和解決問題,達到培養學生的創新思維的目的。
1.瞭解函式概念產生的背景,學習和掌握函式的概念和性質,能借助函式的知識表述、刻畫事物的變化規律;
2.理解有理指數冪的意義,掌握有理指數冪的運算性質;掌握指數函式的概念、圖象和性質;理解對數的概念,掌握對數的運算性質,掌握對數函式的概念、圖象和性質;瞭解冪函式的概念和性質,知道指數函式、對數函式、冪函式時描述客觀世界變化規律的重要數學模型;
第三章:函式的應用
函式的應用是學習函式的一個重要方面,學生學習函式的應用,目的就
是利用已有的函式知識分析問題和解決問題.透過函式的應用,對完善函式思想,激發學生應用數學的意識,培養分析問題、解決問題的能力,增強進行實踐的能力等,都有很大的幫助。
1.瞭解函式與方程之間的關係;會用二分法求簡單方程的近似解;瞭解函式模型及其意義;
2.培養學生的理性思維能力、辯證思維能力、分析問題和解決問題的能力、創新意識與探究能力、數學建模能力以及數學交流的能力。
必修4:主要涉及三章內容:
第一章:三角函式
透過本章學習,有助於學生認識三角函式與實際生活的緊密聯絡,以及三角函式在解決實際問題中的廣泛應用,從中感受數學的價值,學會用數學的思維方式觀察、分析現實世界、解決日常生活和其他學科學習中的問題,發展數學應用意識。
1.瞭解任意角的概念和弧度制;
2.掌握任意角三角函式的定義,理解同角三角函式的基本關係及誘導公式;
3.瞭解三角函式的週期性;
4.掌握三角函式的影象與性質。
第二章:平面向量
在本章中讓學生了解平面向量豐富的實際背景,理解平面向量及其運算的意義,能用向量的語言和方法表述和解決數學和物理中的一些問題,發展運算能力和解決實際問題的能力。
1.理解平面向量的概念及其表示;
2.掌握平面向量的加法、減法和向量數乘的運算;
3.理解平面向量的正交分解及其座標表示,掌握平面向量的座標運算;
4.理解平面向量數量積的含義,會用平面向量的數量積解決有關角度和垂直的問題。
第三章:三角恆等變換
透過推導兩角和與差的餘弦、正弦、正切公式,二倍角的正弦、餘弦
高一數學教學計劃10
進一步深化教育教學改革,樹立全新的語文教育觀,構建全新而科學的教學目標體系、數學網特制定高一上學期數學函式的基本性質教學計劃模板。
教材分析
函式性質是函式的固有屬性,是認識函式的重要手段,而函式性質可以由函式圖象直觀的反應出來,因此,函式各個性質的學習要從特殊的、已知的圖象入手,抽象出此類函式的共同特徵,並用數學語言來定義敘述。基於此,本節的概念課教學要注重引導,注重知識的形成過程,習題課教學以具體技巧、方法作為輔助練習。
學情分析
學生對函式概念重新認識之後,可以結合初中學過的簡單函式的圖象對函式性質進行抽象定義。另外,為了方便學生做題及熟悉函式性質,還需要補充一些函式圖象的知識,例如平移、二次函式圖象、含絕對值函式的圖象、反比例函式及其變形的函式圖象。總之,本節課的教學要從學生認知實際出發,堅持從圖象中來到圖象中去的原則。
教學建議
以圖象作為切入點進行概念課教學,引導學生對概念的形成有一個清晰的認識,尤其是概念中的部分關鍵詞要做深入講解,用函式圖象指導學生做題。
教學目標
知識與技能
(1)能理解函式單調性、最值、奇偶性的圖形特徵
(2)會用單調性定義證明具體函式的單調性;會求函式的最值;會用奇偶性定義判斷函式奇偶性
(3)單調性與奇偶性的綜合題
(4)培養學生觀察、歸納、推理的抽象思維能力
過程與方法
(1)從觀察具體函式的影象特徵入手,結合相應問題引導學生一步步轉化到用數學語言形式化的建立相關概念
(2)滲透數形結合的數學思想進行習題課教學
情感、態度與價值觀
(1)使學生學會認識事物的一般規律:從特殊到一般,抽象歸納
(2)培養學生嚴密的邏輯思維能力,進一步規範學生用數學語言、數學符號進行表達
課時安排
(1)概念課:單調性2課時,最值1課時,奇偶性1課時
(2)習題課:5課時
高一數學教學計劃11
一、教材分析(結構系統、單元內容、重難點)
必修5第一章:解三角形;重點是正弦定理與餘弦定理;難點是正弦定理與餘弦定理的應用;第二章:數列;重點是等差數列與等比數列的前n項的和;難點是等差數列與等比數列前n項的和與應用;第三章:不等式;重點是一元二次不等式及其解法、二元一次不等式(組)與簡單的線性規劃問題、基本不等式;難點是二元一次不等式(組)與簡單的線性規劃問題及應用;
必修2第一章:空間幾何體;重點是空間幾何體的三檢視和直觀圖及表面積與體積;難點是空間幾何體的三檢視;第二章:點、直線、平面之間的位置關係;重點與難點都是直線與平面平行及垂直的判定及其性質;第三章:直線與方程;重點是直線的傾斜角與斜率及直線方程;難點是如何選擇恰當的直線方程求解題目;第四章:圓與方程;重點是圓的方程及直線與圓的位置關係;難點是直線與圓的位置關係;
二、學生分析(雙基智慧水平、學習態度、方法、紀律)
較去年而言,今年的學生的素質有了比較大的提高,學生的基礎知識水平與基本學習方法比較紮實,大部分的學生對學習都有很大的興趣,學習紀律比較自覺。
三、教學目的要求
1.透過對任意三角形邊長和角度關係的探索,掌握正弦定理、餘弦定理,並能解決一些簡單的三角形度量問題和與測量及幾何計算有關的實際問題。
2.透過日常生活中的例項,瞭解數列的概念和幾種簡單的表示方法,瞭解數列是一種特殊的函式;理解等差數列、等比數列的概念,探索並掌握2種數列的通項公式與前n項和的公式,能用有關的知識解決相應的問題。
3.理解不等式(組)對於刻畫不等關係的意義和價值;掌握求解一元二次不等式的基本方法,並能解決一些實際問題;能用一元二次不等式組表示平面區域,並嘗試解決簡單的二元線性規劃問題。
4.幾何學研究現實世界中物體的形狀、大小與位置的學科。直觀感知、操作確認、思辨論證、度量計算是認識和探索幾何圖形及其性質的方法。先從對空間幾何體的整體觀察入手,認識空間圖形及其直觀圖的畫法;再以長方體為載體,直觀認識和理解空間中點、直線、平面之間的位置關係,並利用數學語言表述有關平行、垂直的性質與判定,對某些結論進行論證。另外瞭解一些簡單幾何體的表面積與體積的計算方法。在解析幾何初步中,在平面直角座標系中建立直線和圓的代數方程,運用代數方法研究它們的幾何性質及其相互關係,瞭解空間直角座標系。體會數形結合的思想,初步形成用代數方法解決幾何問題的能力。
四、完成教學任務和提高教學質量的具體措施
積極做好集體備課工作,達到內容統一、進度統一、目標統一、例題統一、習題統一、資料統一;上好每一節課,及時對學生的思想進行觀察與指導;課後進行有效的輔導;進行有效的課堂反思。
五、教學進度
周次 | 課、章、節 | 教 學 內 容 | 備 注 |
1 | 1.1,1.2 | 解三角形 | |
2 | 1.2 | 解三角形 | |
3 | 2.1,2.2 | 數列的概念與簡單表示法,等差數列 | |
4 | 2.3 | 等差數列的前n項和 | |
5 | 2.4,2.5 | 等比數列及前n項和 | |
6 | 2.5 | ||
7 | 3.1,3.2 | 不等關係與不等式,一元二次不等式及其解法 | |
8 | 3.3,3.4 | 二元一次不等式(組)與簡單線性規劃問題,基本不等式 | |
9 | ,複習 | ||
10 | 期中考試 | ||
11 | 1.1,1.2 | 空間幾何體的結構,三檢視,直觀圖 | |
12 | 1.3 | 空間幾何體的表面積與體積 | |
13 | 2.1,2.2 | 空間點、直線、平面的位置關係,直線、平面平行的判定及其性質 | |
14 | 2.3 | 直線、平面的判定及其性質 | |
15 | 3.1,3.2 | 直線的傾斜角與斜率,直線方程 | |
16 | 3.3 | 直線的`交點座標與距離公式 | |
17 | 4.1,4.2 | 圓的方程,直線、圓的位置關係 | |
18 | 4.3 | 空間直角座標系 | |
19 | 複習 | ||
20 | 考試 |
高一數學教學計劃12
一、具體目標:
1、獲得必要的數學基礎知識和基本技能,理解基本的數學概念、數學結論的本質,瞭解概念、結論等產生的背景、應用,體會其中所蘊涵的數學思想和方法,以及它們在後續學習中的作用。經過不一樣形式的自主學習、探究活動,體驗數學發現和創造的歷程。
2、提高空間想像、抽象概括、推理論證、運算求解、資料處理等基本本事。
3、提高數學地提出、分析和解決問題(包括簡單的實際問題)的本事,數學表達和交流的本事,發展獨立獲取數學知識的本事。
4、發展數學應用意識和創新意識,力求對現實世界中蘊涵的一些數學模式進行思考和作出確定。
5、提高學習數學的興趣,樹立學好數學的信心,構成鍥而不捨的鑽研精神和科學態度。
6、具有必須的數學視野,逐步認識數學的科學價值、應用價值和文化價值,構成批判性的思維習慣,崇尚數學的理性精神,體會數學……
二、本學期要到達的教學目標
1、雙基要求:
在基礎知識方面讓學生掌握高一有關的概念、性質、法則、公式、定理以及由其資料反映出來的數學思想和方法。在基本技能方面能按照必須的程式與步驟進行運算、處理資料、能使用計數器及簡單的推理、畫圖。
2、本事培養:
能運用數學概念、思想方法,辨明數學關係,構成良好的思維品質;會根據法則、公式正確的進行運算、處理資料,並能根據問題的情景設計運算途徑;會提出、分析和解決簡單的帶有實際意義的或在相關學科、生產和生活的數學問題,並進行交流,構成數學的意思;從而經過獨立思考,會從數學的角度發現和提出問題,進行探索和研究。
3、思想教育:
培養高一學生,學習數學的興趣、信心和毅力及實事求是的科學態度,勇於探索創新的精神,及欣賞數學的美學價值,並懂的數學來源於實踐又反作用於實踐的觀點;數學中普遍存在的對立統一、運動變化、相互聯絡、相互轉化等觀點。
三、進度授課計劃及進度表
(略)
高一數學教學計劃13
教材教法分析
本節課是蘇教版普通高中課程標準實驗教科書數學必修(2)第2章第三節的第一節課.該課是在二維平面直角座標系基礎上的推廣,是空間立體幾何的代數化.教材透過一個實際問題的分析和解決,讓學生感受建立空間直角座標系的必要性,內容由淺入深、環環相扣,體現了知識的發生、發展的過程,能夠很好的誘導學生積極地參與到知識的探究過程中.同時,透過對《空間直角座標系》的學習和掌握將對今後學習本節內容《空間兩點間的距離》和選修2-1內容《空間中的向量與立體幾何》有著鋪墊作用.由此,本課打算透過師生之間的合作、交流、討論,利用類比建立起空間直角座標系.
學情分析
一方面學生透過對空間幾何體:柱、錐、臺、球的學習,處理了空間中點、線、面的關係,初步掌握了簡單幾何體的直觀圖畫法,因此頭腦中已建立了一定的空間思維能力.另一方面學生剛剛學習瞭解析幾何的基礎內容:直線和圓,對建立平面直角座標系,根據座標利用代數的方法處理問題有了一定的認識,因此也建立了一定的轉化和數形結合的思想.這兩方面都為學習本課內容打下了基礎.
教學目標
1.知識與技能
①透過具體情境,使學生感受建立空間直角座標系的必要性
②瞭解空間直角座標系,掌握空間點的座標的確定方法和過程
③感受類比思想在探究新知識過程中的作用
2.過程與方法
①結合具體問題引入,誘導學生探究
②類比學習,循序漸進
3.情感態度與價值觀
透過用類比的數學思想方法探究新知識,使學生感受新舊知識的聯絡和研究事物從低維到高維的一般方法.透過實際問題的引入和解決,讓學生體會數學的實踐性和應用性,感受數學刻畫生活的作用,不斷地拓展自己的思維空間.
教學重點
本課是本節第一節課,關鍵是空間直角座標系的建立,對今後相關內容的學習有著直接的影響作用,所以本課教學重點確立為空間直角座標系的理解.
教學難點
透過建立恰當的空間直角座標系,確定空間點的座標。
先透過具體問題回顧平面直角座標系,使學生體會用座標刻畫平面內任意點的位置的方法,進而設定具體問題情境促發利用舊知解決問題的侷限性,從而尋求新知,根據已有一定空間思維,所以能較容易得出第三根軸的建立,進而感受逐步發展得到空間直角座標系的建立,再逐步掌握利用座標表示空間任意點的位置.總得來說,關鍵是具體問題情境的設立,不斷地讓學生感受,交流,討論.
高一數學教學計劃14
一、教學分析
1、分析教材
本章教材整體主要分成三大部分:
(1)、圓的標準方程與一般方程;
(2)、直線與圓、圓與圓的位置關係;
(3)、空間直角座標系以及空間兩點間的距離公式。
圓的方程是在前一章直線方程基礎上引入的新的曲線方程,更進一步要求“數與形”結合。所以學習有關圓的方程時,仍仍然沿用直線方程中使用的座標法,繼續運用座標法研究直線與圓、圓與圓的位置關係等幾何問題。此外還要學習空間直角座標系的有關知識,以便為今後用座標法研究空間幾何物件奠定基礎。這些知識是進一步學習圓錐曲線方程、導數和積分的基礎。
2、分析學生
高中一年級的學生還沒有建立起比較好的數形結合的思想,前面學習過直線知識,只是使學生有了用座標法研究問題的基本思路,透過圓的概念的引入及其現實生活中圓的例子,啟發學生學習的興趣及研究問題的方法,培養學生分析探索問題的能力,熟練的掌握解決解析幾何問題的方法-座標法,滲透數形結合的思想研究問題時抓住問題的本質,研究細緻思考,規範得出解答,體現運動變化,對立統一的思想
3、教學重點與難點
重點:圓的標準方程與一般方程;利用直線與圓的方程判斷直線與圓、圓與圓的位置關係;空間直角座標系的基本認識。
難點:直線與圓的方程的應用;會求解簡單的直線與圓的相關曲線的方程;建立空間直角座標系。
二、教學目標
1、掌握圓的定義和圓標準方程、一般方程的概念;能根據圓的方程求圓心和半徑,初步掌握求圓的方程的方法。
2、掌握直線與圓的位置關係的判定。
3、在進一步培養學生類比、數形結合、分類討論和化歸的數學思想方法的過程中,提高學生學習能力。
4、培養學生科學探索精神、審美觀和理論聯絡實際思想。
三、教學策略
1、教學模式
本節內容是運用“問題解決”課堂教學模式的一次嘗試,採用探究、討論的
教學方法,透過問題激發學生求知慾,使學生主動參與數學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發現、分析和解決問題,掌握數學基本知識和基本能力,培養積極探索和團結協作的科學精神。
2、教學方法與手段--充分利用資訊科技,合理整合課程資源
採用探究、討論的教學方法,透過問題激發學生求知慾採用多媒體技術,目的在於充分利用其優良的傳播功能,大容量資訊的呈現和生動形象的演示(尤其是動畫效果)對提高學生學習興趣、啟用學生思維、加深概念理解有積極作用。製作中,採用互動技術,使課件的機動性得到加強。
四、對內容安排的說明
本章分三部分:圓的標準方程與一般方程;直線與圓、圓與圓的位置關係;空間直角座標系。
1、建立圓的方程是本節的主要內容之一。根據圓的幾何特徵(主要是動點與定點間距離恆定)建立適當的座標系,再根據曲線上的點所滿足的幾何條件,求出點的座標所滿足的曲線方程。
透過研究方程來研究曲線的性質是解析幾何的另一個主要內容,這就是解析幾何透過代數方法研究幾何圖形的特點,也就是座標法。始終強調曲線方程與曲線圖像之間的一一對應。這一思想應該貫穿於整個圓的教學。
2.透過方程,研究直線與圓、圓與圓的位置關係是本章的主要內容之一。判斷直線與圓、圓與圓的位置關係可以從兩個方面著手:
(1)。兩條曲線有無公共點,等價於由它們方程聯立的方程組有無實數解。方程組有幾組實數解,這兩條曲線就有幾個公共點;方程組沒有實數解,這兩條曲線就沒有公共點。
(2)。運用平面幾何知識,把直線與圓、圓與圓位置關係的結論轉化為相應的代數結論。
3、座標法是研究幾何問題的重要方法,在教學過程中,應該始終貫穿座標法這一重要思想,不怕重複;透過座標系,把點和座標、曲線和方程聯絡起來,實現形和數的統一。
用座標法解決幾何問題時,先用座標和方程表示相應的幾何物件,然後對座標和方程進行代數討論;最後再把代數運算結果翻譯成相應的幾何結論。這就是用座標法解決平面幾何問題的“三步曲”:
第一步:建立適當的平面直角座標系,用座標和方程表示問題中涉及的幾何元素,將平面幾何問題轉化為代數問題;
第二步:透過代數運算,解決代數問題;
第三步:把代數運算結果翻譯成幾何結論。
五、教學評價
㈠過程性評價
1、教學過程中,教師的講解和學生的練習緊扣教學目標,內容深淺要分層次,設計的問題要照顧好、中、差。
2、對於方程的推導運用的方法,學生理解起來難度較大,主要採用讓學生理解的基礎上進行檢測反饋
㈡終結性評價
1、課程內容全部結束後,讓學生分組交流、討論後,選代表談收穫、體會和感想。
2、留課後作業(扣教學目標、分型別、分層次,落實學生為主體),讓學生認真理解和鞏固,瞭解圓的標準方程和一般方程,以及直線與圓位置關係,做完課後習題,做好作業。
高一數學教學計劃15
一、內容及其解析
1。內容:這是一節建立直線的點斜式方程(斜截式方程)的概念課。學生在此之前已學習了在直角座標系內確定直線一條直線幾何要素,已知直線上的一點和直線的傾斜角(斜率)可以確定一條直線,已知兩點也可以確定一條直線。本節要求利用確定一條直線的幾何要素直線上的一點和直線的傾斜角,建立直線方程,透過方程研究直線。
2。解析:直線方程屬於解析幾何的基礎知識,是研究解析幾何的開始。從整體來看,直線方程初步體現瞭解析幾何的實質用代數的知識研究幾何問題。從集合與對應的角度構建了平面上的直線與二元一次方程的一一對應關係,是學習解析幾何的基礎。對後續圓、直線與圓的位置關係等內容的學習,無論是知識上還是方法上都有著積極的意義。從本節來看,學生對直線既是熟悉的,又是陌生的。熟悉是學生知道一次函式的影象是直線,陌生是用解析幾何的方法求直線的方程。直線的點斜式方程是推導其它直線方程的基礎,在直線方程中佔有重要地位。
二、目標及其解析
1。目標
掌握直線的點斜式和斜截式方程的推導過程,並能根據條件熟練求出直線的點斜式方程和斜截式方程。
2。解析
①知道直線上的一點和直線的傾斜角的代數含義是這個點的座標和這條直線的斜率。知道建立直線方程就是將確定直線的幾何要素用代數形式表示出來。
②理解建立直線點斜式方程就是用直線上任意一點與已知點這兩個點的座標表示斜率。
③經歷直線的點斜式方程的推導過程,體會直線和直線方程之間的關係,滲透解析幾何的基本思想。
④在討論直線的點斜式方程的應用條件與建立直線的斜截式方程中,體會分類討論的思想,體會特殊與一般思想。
⑤在建立直線方程的過程中,體會數形結合思想。在直線的斜截式方程與一次函式的比較中,體會兩者區別與聯絡,特別是體會兩者數形結合的區別,進一步體會解析幾何的基本思想。
三、教學問題診斷分析
1。學生在初中已經學習了一次函式,知道一次函式的影象是一條直線,因此學生對研究直線的方程可能心存疑慮,產生疑慮的原因是學生初次接觸到解析幾何,不明確解析幾何的實質,因此應跟學生講請解析幾何與函式的區別。
2。學生能聽懂建立直線的點斜式的過程,但可能會不知道為什麼要這麼做。因此還是要跟學生講清座標法的實質把幾何問題轉化成代數問題,用代數運算研究幾何圖形性質。
3。由於學生沒有學習曲線與方程,因此學生難以理解直線與直線的方程,甚至認為驗證直線是方程的直線是多餘的。這裡讓學生初步理解就行,隨著後面教學的深入和反覆滲透,學生會逐步理解的。
四、教法與學法分析
1、教法分析
新課標指出,學生是教學的主體。教師要以學生活動為主線。在原有知識的基礎上,構建新的知識體系。本節課可採用啟發式問題教學法教學。透過問題串,啟發學生自主探究來達到對知識的發現和接受。透過縱向挖掘知識的深度,橫向加強知識間的聯絡,培養學生的創新精神。並且使學生的有效思維量加大,隨著對新知識和方法產生有意注意,使能力與知識的形成相伴而行,使學生在解決問題的同時,形成方法。
2、學法分析
改善學生的學習方式是高中數學課程追求的基本理念。學生的數學學習活動不僅僅限於對概念結論和技能的記憶、模仿和積累。獨立思考,自主探索,動手實踐,合作交流,閱讀自學等都是學習數學的重要方式,這些方式有助於發揮學生學習主觀能動性,使學生的學習過程成為在教師引導下的再創造的過程。為學生形成積極主動的、多樣的學習方式創造有利的條件。以激發學生的學習興趣和創新潛能,幫助學生養成獨立思考,積極探索的習慣。
透過直線的點斜式方程的推導,加深對用座標求方程的理解;透過求直線的點斜式方程,理解一個點和方向可以確定一條直線;透過求直線的斜截式方程,熟悉用待定係數法求的過程,讓學生利用圖形直觀啟迪思維,實現從感性認識到理性思維質的飛躍。讓學生從問題中質疑、嘗試、歸納、總結,培養學生髮現問題、研究問題和分析解決問題的能力。
五、教學過程設計
問題1:在直角座標系內確定直線一條直線幾何要素是什麼?如何將這些幾何要素代數化?
[設計意圖]讓學生理解直線上的一點和直線的傾斜角的代數含義是這個點的座標和這條直線的斜率。
問題2:建立直線方程的實質是什麼?
[設計意圖]建立直線方程就是將確定直線的幾何要素用代數形式表示出來。也就是將直線上點的座標滿足的條件用方程表示出來。
引例:若直線經過點,斜率為,點在直線上運動,那麼點的座標滿足什麼條件?
[設計意圖]讓學生透過具體例子經歷求直線的點斜式方程的過程,初步瞭解求直線方程的步驟。
問題2。1要得到座標滿足什麼條件,就是找出與、斜率為之間的關係,它們之間有何種關係?
(過與兩點的直線的斜率為)
[設計意圖]讓學生尋找確定直線的條件,體會動中找靜。
問題2。2如何將上述條件用代數形式表示出來?
[設計意圖]讓學生理解和體會用座標表示確定直線的條件。
用代數式表示出來就是,即。
問題2。3為什麼說是滿足條件的直線方程?
[設計意圖]讓學生初步感受直線與直線方程的關係。
此時的座標也滿足此方程。所以當點在直線上運動時,其座標滿足。
另外以方程的解為座標的點也在直線上。
所以我們得到經過點,斜率為的直線方程是。
問題2。4:能否說方程是經過,斜率為的直線方程?
[設計意圖]讓學生初步感受直線(曲線)方程的完備性。儘管學生不可能深刻理解直線(曲線)方程的完備性,但在這裡仍要滲透,為後因理解曲線方程的埋下伏筆。
問題3:推廣:已知一直線過一定點,且斜率為k,怎樣求直線的方程?
[設計意圖]由特殊到一般的學習思路,培養學生的是歸納概括能力。
問題4:直線上有無數個點,如何才能選取所有的點?以前學習中有沒有類似的處理問題的方法?
[設計意圖]引導學生掌握解析幾何取點的方法。
引導學生求出直線的點斜式方程
注:在求直線方程的過程中要說明直線上的點的座標滿足方程,也要說明以方程的解為座標的點在直線上,即方程的解與直線上的點的座標是一一對應的。為以後學習曲線與方程打好基礎。教學中讓學生感覺到這一點就可以。不必做過多解釋。
問題5:從求直線方程的過程中,你知道了求幾何圖形的方程的步驟有哪些嗎?
[設計意圖]讓學生初步感受解析幾何求曲線方程的步驟。
①設點———用表示曲線上任一點的座標;
②尋找條件————寫出適合條件;
③列出方程————用座標表示條件,列出方程
④化簡———化方程為最簡形式;
⑤證明————證明以化簡後的方程的解為座標的點都是曲線上的點。
例1分別求經過點,且滿足下列條件的直線的方程,並畫出直線。
⑴傾斜角
⑵斜率
⑶與軸平行;
⑷與軸平行。
[設計意圖]讓學生掌握直線的點斜式的使用條件,把直線的點斜式方程作公式用,讓學生熟練掌握直線的點斜式方程,並理解直線的點斜式方程使用條件。
注:⑴應用直線的點斜式方程的條件是:①定點,②斜率存在,即直線的傾斜角。
⑵與的區別。後者表示過,且斜率為k的直線方程,而前者不包括。
⑶當直線的傾斜角時,直線的斜率,直線方程是。
⑷當直線的傾斜角時,此時不能直線的點斜式方程表示直線,直線方程是。
練習:1。。
2。已知直線的方程是,則直線的斜率為,傾斜角為,這條直線經過的一個已知點為。
[設計意圖]在直線的點斜式方程的逆用過程中,進一步體會和理解直線的點斜式方程。
問題6:特別地,如果直線的斜率為,且與軸的交點座標為(0,b),求直線的方程。
[設計意圖]由一般到特殊,培養學生的推理能力,同時引出截距的概念和直線斜截式方程。
將斜率與定點代入點斜式直線方程可得:
說明:我們把直線與y軸交點(0,b)的縱座標b叫做直線在y軸上的截距。這個方程是由直線的斜率與它在y軸上的截距b確定,所以叫做直線的斜截式方程。
注(1)截距可取任意實數,它不同於距離。直線在軸上截距的是。
(2)斜截式方程中的k和b有明顯的幾何意義。
(3)斜截式方程的使用範圍和斜截式一樣。
問題7:直線的斜截式方程與我們學過的一次函式的類似。我們知道,一次函式的影象是一條直線。你如何從直線方程的角度認識一次函式?一次函式中k和b的幾何意義是什麼?
[設計意圖]讓學生理解直線方程與一次函式的區別與聯絡,進一步理解解析幾何的實質。函式影象是以形助數,而解析幾何是以數論形。
練習:1。。
2。直線的斜率為2,在軸上的截距為,求直線的方程。
[設計意圖]讓學生明確截距的含義。
3。直線過點,它的斜率與直線的斜率相等,求直線的方程。
[設計意圖]讓學生進一步理解直線斜截式方程的結構特徵。
4。已知直線過兩點和,求直線的方程。
[設計意圖]讓學生能合理選擇直線方程的不同形式求直線方程,同時為下節學習直線的兩點式方程埋下伏筆。
例2:已知直線,試討論
(1)與平行的條件是什麼?
(2)與重合的條件是什麼?
(3)與垂直的條件是什麼?
說明:①平行、重合、垂直都是幾何上位置關係,如何用代數的數量關係來刻畫。
②教學中從兩個方面來說明,若兩直線平行,則且反過來,若且,則兩直線平行。
③若直線的斜率不存在,與之平行、垂直的條件分別是什麼?
練習:
問題8:本節課你有哪些收穫?
要點:
(1)直線方程的點斜式、斜截式的命名都是顧名思義的,要會加以區別。
(2)兩種形式的方程要在熟記的基礎上靈活運用。
總結:制定教學計劃的主要目的是為了全面瞭解學生的數學學習歷程,激勵學生的學習和改進教師的教學。