整式的加減複習資料
1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。
2.係數:單項式中的數字因數叫做這個單項式的係數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等於1.
3.多項式:幾個單項式的和叫多項式。
4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式裡,次數最高項的次數叫多項式的次數。
5.常數項:不含字母的項叫做常數項。
6.多項式的排列
(1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。
(2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。
7.多項式的排列時注意:
(1)由於單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。
(2)有兩個或兩個以上字母的多項式,排列時,要注意:
a.先確認按照哪個字母的`指數來排列。
b.確定按這個字母向裡排列,還是向外排列。
(3)整式:
單項式和多項式統稱為整式。
8.多項式的加法:
多項式的加法,是指多項式的同類項的係數相加(即合併同類項)。
9.同類項:所含字母相同,並且相同字母的次數也分別相同的項叫做同類項。
10.合併同類項:多項式中的同類項可以合併,叫做合併同類項,合併同類項的法則是:同類項的係數相加,所得的結果作為係數,字母與字母的指數不變。
11.掌握同類項的概念時注意:
(1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:
①所含字母相同。
②相同字母的次數也相同。
(2)同類項與係數無關,與字母排列的順序也無關。
(3)所有常數項都是同類項。
12.合併同類項步驟:
(1)準確的找出同類項;
(2)逆用分配律,把同類項的係數加在一起(用小括號),字母和字母的指數不變;
(3)寫出合併後的結果。
13.在掌握合併同類項時注意:
(1)如果兩個同類項的係數互為相反數,合併同類項後,結果為0;
(2)不要漏掉不能合併的項;
(3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。
14.整式的拓展
整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結構特徵以及公式中的字母的廣泛含義,學生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關鍵,這是因為,一般多項式的乘除都要“轉化”為單項式的乘除。
整式四則運算的主要題型有:
(1)單項式的四則運算
此類題目多以選擇題和應用題的形式出現,其特點是考查單項式的四則運算。
(2)單項式與多項式的運算