1. 首頁
  2. 其他

高一物理必修一的知識點總結

高一物理必修一的知識點總結

高一物理必修一知識點總結一


第一章運動的描述

第一節認識運動

機械運動:物體在空間中所處位置發生變化,這樣的運動叫做機械運動。

運動的特性:普遍性,永恆性,多樣性

參考系

1.任何運動都是相對於某個參照物而言的,這個參照物稱為參考系。

2.參考系的選取是自由的。

1)比較兩個物體的運動必須選用同一參考系。

2)參照物不一定靜止,但被認為是靜止的。

質點

1.在研究物體運動的過程中,如果物體的大小和形狀在所研究問題中可以忽略是,把物體簡化為一個點,認為物體的質量都集中在這個點上,這個點稱為質點。

2.質點條件:

1)物體中各點的運動情況完全相同(物體做平動)

2)物體的大小(線度)<<它透過的距離

3.質點具有相對性,而不具有絕對性。

4.理想化模型:根據所研究問題的性質和需要,抓住問題中的主要因素,忽略其次要因素,建立一種理想化的模型,使複雜的問題得到簡化。(為便於研究而建立的一種高度抽象的理想客體)

第二節時間位移

時間與時刻

1.鐘錶指示的一個讀數對應著某一個瞬間,就是時刻,時刻在時間軸上對應某一點。兩個時刻之間的間隔稱為時間,時間在時間軸上對應一段。

△t=t2—t1

2.時間和時刻的單位都是秒,符號為s,常見單位還有min,h。

3.通常以問題中的初始時刻為零點。

路程和位移

1.路程表示物體運動軌跡的長度,但不能完全確定物體位置的變化,是標量。

2.從物體運動的起點指向運動的重點的有向線段稱為位移,是向量。

3.物理學中,只有大小的物理量稱為標量;既有大小又有方向的物理量稱為向量。

4.只有在質點做單向直線運動是,位移的大小等於路程。兩者運演算法則不同。

第三節記錄物體的運動資訊

打點記時器:透過在紙帶上打出一系列的點來記錄物體運動資訊的儀器。(電火花打點記時器——火花打點,電磁打點記時器——電磁打點);一般打出兩個相鄰的點的時間間隔是0.02s。

第四節物體運動的速度

物體透過的路程與所用的時間之比叫做速度。

平均速度(與位移、時間間隔相對應)

物體運動的平均速度v是物體的位移s與發生這段位移所用時間t的比值。其方向與物體的位移方向相同。單位是m/s。

v=s/t

瞬時速度(與位置時刻相對應)

瞬時速度是物體在某時刻前後無窮短時間內的平均速度。其方向是物體在運動軌跡上過該點的切線方向。瞬時速率(簡稱速率)即瞬時速度的大小。

速率≥速度

第五節速度變化的快慢加速度

1.物體的加速度等於物體速度變化(vt—v0)與完成這一變化所用時間的比值

a=(vt—v0)/t

2.a不由△v、t決定,而是由F、m決定。

3.變化量=末態量值—初態量值……表示變化的大小或多少

4.變化率=變化量/時間……表示變化快慢

5.如果物體沿直線運動且其速度均勻變化,該物體的運動就是勻變速直線運動(加速度不隨時間改變)。

6.速度是狀態量,加速度是性質量,速度改變數(速度改變大小程度)是過程量。

第六節用圖象描述直線運動

勻變速直線運動的位移圖象

1.s-t圖象是描述做勻變速直線運動的物體的位移隨時間的變化關係的曲線。(不反映物體運動的軌跡)

2.物理中,斜率k≠tanα(2座標軸單位、物理意義不同)

3.圖象中兩圖線的交點表示兩物體在這一時刻相遇。

勻變速直線運動的速度圖象

1.v-t圖象是描述勻變速直線運動的物體歲時間變化關係的圖線。(不反映物體運動軌跡)

2.圖象與時間軸的面積表示物體運動的位移,在t軸上方位移為正,下方為負,整個過程中位移為各段位移之和,即各面積的代數和。

第二章探究勻變速直線運動規律

第一、二節探究自由落體運動/自由落體運動規律

記錄自由落體運動軌跡

1.物體僅在中立的作用下,從靜止開始下落的運動,叫做自由落體運動(理想化模型)。在空氣中影響物體下落快慢的因素是下落過程中空氣阻力的影響,與物體重量無關。

2.伽利略的科學方法:觀察→提出假設→運用邏輯得出結論→透過實驗對推論進行檢驗→對假說進行修正和推廣

自由落體運動規律

自由落體運動是一種初速度為0的勻變速直線運動,加速度為常量,稱為重力加速度(g)。g=9.8m/s2

重力加速度g的方向總是豎直向下的。其大小隨著緯度的增加而增加,隨著高度的增加而減少。

vt2=2gs

豎直上拋運動

1.處理方法:分段法(上升過程a=-g,下降過程為自由落體),整體法(a=-g,注意向量性)

1.速度公式:vt=v0—gt位移公公式:h=v0t—gt2/2

2.上升到最高點時間t=v0/g,上升到最高點所用時間與回落到丟擲點所用時間相等

3.上升的最大高度:s=v02/2g

第三節勻變速直線運動

勻變速直線運動規律

1.基本公式:s=v0t+at2/2

2.平均速度:vt=v0+at

3.推論:1)v=vt/2

2)S2—S1=S3—S2=S4—S3=……=△S=aT2

3)初速度為0的n個連續相等的時間內S之比:

S1:S2:S3:……:Sn=1:3:5:……:(2n—1)

4)初速度為0的n個連續相等的位移內t之比:

t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1)

5)a=(Sm—Sn)/(m—n)T2(利用上各段位移,減少誤差→逐差法)

6)vt2—v02=2as

第四節汽車行駛安全

1.停車距離=反應距離(車速×反應時間)+剎車距離(勻減速)

2.安全距離≥停車距離

3.剎車距離的大小取決於車的初速度和路面的粗糙程度

4.追及/相遇問題:抓住兩物體速度相等時滿足的臨界條件,時間及位移關係,臨界狀態(勻減速至靜止)。可用圖象法解題。

第三章研究物體間的相互作用

第一節探究形變與彈力的關係

認識形變

1.物體形狀回體積發生變化簡稱形變。

2.分類:按形式分:壓縮形變、拉伸形變、彎曲形變、扭曲形變。

按效果分:彈性形變、塑性形變

3.彈力有無的判斷:1)定義法(產生條件)

2)搬移法:假設其中某一個彈力不存在,然後分析其狀態是否有變化。

3)假設法:假設其中某一個彈力存在,然後分析其狀態是否有變化。

彈性與彈性限度

1.物體具有恢復原狀的性質稱為彈性。

2.撤去外力後,物體能完全恢復原狀的形變,稱為彈性形變。

3.如果外力過大,撤去外力後,物體的形狀不能完全恢復,這種現象為超過了物體的彈性限度,發生了塑性形變。

探究彈力

1.產生形變的物體由於要恢復原狀,會對與它接觸的物體產生力的作用,這種力稱為彈力。

2.彈力方向垂直於兩物體的接觸面,與引起形變的外力方向相反,與恢復方向相同。

繩子彈力沿繩的收縮方向;鉸鏈彈力沿杆方向;硬杆彈力可不沿杆方向。

彈力的作用線總是透過兩物體的接觸點並沿其接觸點公共切面的垂直方向。

3.在彈性限度內,彈簧彈力F的大小與彈簧的伸長或縮短量x成正比,即胡克定律。

F=kx

4.上式的k稱為彈簧的勁度係數(倔強係數),反映了彈簧發生形變的難易程度。

5.彈簧的串、並聯:串聯:1/k=1/k1+1/k2並聯:k=k1+k2

第二節研究摩擦力

滑動摩擦力

1.兩個相互接觸的物體有相對滑動時,物體之間存在的摩擦叫做滑動摩擦。

2.在滑動摩擦中,物體間產生的阻礙物體相對滑動的作用力,叫做滑動摩擦力。

3.滑動摩擦力f的大小跟正壓力N(≠G)成正比。即:f=μN

4.μ稱為動摩擦因數,與相接觸的物體材料和接觸面的粗糙程度有關。0<μ<1。

5.滑動摩擦力的方向總是與物體相對滑動的方向相反,與其接觸面相切。

6.條件:直接接觸、相互擠壓(彈力),相對運動/趨勢。

7.摩擦力的大小與接觸面積無關,與相對運動速度無關。

8.摩擦力可以是阻力,也可以是動力。

9.計算:公式法/二力平衡法。

研究靜摩擦力

1.當物體具有相對滑動趨勢時,物體間產生的摩擦叫做靜摩擦,這時產生的摩擦力叫靜摩擦力。

2.物體所受到的靜摩擦力有一個最大限度,這個最大值叫最大靜摩擦力。

3.靜摩擦力的方向總與接觸面相切,與物體相對運動趨勢的方向相反。

4.靜摩擦力的大小由物體的運動狀態以及外部受力情況決定,與正壓力無關,平衡時總與切面外力平衡。0≤F=f0≤fm

5.最大靜摩擦力的大小與正壓力接觸面的粗糙程度有關。fm=μ0·N(μ≤μ0)

6.靜摩擦有無的判斷:概念法(相對運動趨勢);二力平衡法;牛頓運動定律法;假設法(假設沒有靜摩擦)。

第三節力的等效和替代

力的圖示

1.力的圖示是用一根帶箭頭的線段(定量)表示力的三要素的方法。

2.圖示畫法:選定標度(同一物體上標度應當統一),沿力的方向從力的作用點開始按比例畫一線段,線上段末端標上箭頭。

3.力的示意圖:突出方向,不定量。

力的等效/替代

1.如果一個力的作用效果與另外幾個力的共同效果作用相同,那麼這個力與另外幾個力可以相互替代,這個力稱為另外幾個力的合力,另外幾個力稱為這個力的分力。

2.根據具體情況進行力的替代,稱為力的合成與分解。求幾個力的合力叫力的合成,求一個力的分力叫力的分解。合力和分力具有等效替代的關係。

3.實驗:平行四邊形定則:P58

第四節力的合成與分解

力的平行四邊形定則

1.力的平行四邊形定則:如果用表示兩個共點力的線段為鄰邊作一個平行四邊形,則這兩個鄰邊的對角線表示合力的大小和方向。

2.一切向量的運算都遵循平行四邊形定則。

合力的計算

1.方法:公式法,圖解法(平行四邊形/多邊形/△)

2.三角形定則:將兩個分力首尾相接,連線始末端的有向線段即表示它們的合力。

3.設F為F1、F2的合力,θ為F1、F2的夾角,則:

F=√F12+F22+2F1F2cosθtanθ=F2sinθ/(F1+F2cosθ)

當兩分力垂直時,F=F12+F22,當兩分力大小相等時,F=2F1cos(θ/2)

4.1)|F1—F2|≤F≤|F1+F2|

2)隨F1、F2夾角的增大,合力F逐漸減小。

3)當兩個分力同向時θ=0,合力最大:F=F1+F2

4)當兩個分力反向時θ=180°,合力最小:F=|F1—F2|

5)當兩個分力垂直時θ=90°,F2=F12+F22

分力的計算

1.分解原則:力的實際效果/解題方便(正交分解)

2.受力分析順序:G→N→F→電磁力

第五節共點力的平衡條件

共點力

如果幾個力作用在物體的同一點,或者它們的作用線相交於同一點(該點不一定在物體上),這幾個力叫做共點力。

尋找共點力的平衡條件

1.物體保持靜止或者保持勻速直線運動的狀態叫平衡狀態。

2.物體如果受到共點力的作用且處於平衡狀態,就叫做共點力的平衡。

3.二力平衡是指物體在兩個共點力的作用下處於平衡狀態,其平衡條件是這兩個離的大小相等、方向相反。多力亦是如此。

4.正交分解法:把一個向量分解在兩個相互垂直的座標軸上,利於處理多個不在同一直線上的向量(力)作用分解。

第六節作用力與反作用力

探究作用力與反作用力的關係

1.一個物體對另一個物體有作用力時,同時也受到另一物體對它的作用力,這種相互作用力稱為作用力和反作用力。

2.力的性質:物質性(必有施/手力物體),相互性(力的作用是相互的)

3.平衡力與相互作用力:

同:等大,反向,共線

異:相互作用力具有同時性(產生、變化、小時),異體性(作用效果不同,不可抵消),二力同性質。平衡力不具備同時性,可相互抵消,二力性質可不同。

牛頓第三定律

1.牛頓第三定律:兩個物體之間的作用力與反作用力總是大小相等、方向相反。

2.牛頓第三定律適用於任何兩個相互作用的物體,與物體的質量、運動狀態無關。二力的產生和消失同時,無先後之分。二力分別作用在兩個物體上,各自分別產生作用效果。

第四章力與運動

第一節伽利略理想實驗與牛頓第一定律

伽利略的理想實驗(見P76、77,以及單擺實驗)

牛頓第一定律

1.牛頓第一定律(慣性定律):一切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種狀態為止。——物體的運動並不需要力來維持。

2.物體保持原來的勻速直線運動狀態或靜止狀態的性質叫慣性。

3.慣性是物體的固有屬性,與物體受力、運動狀態無關,質量是物體慣性大小的唯一量度。

4.物體不受力時,慣性表現為物體保持勻速直線運動或靜止狀態;受外力時,慣性表現為運動狀態改變的難易程度不同。

第二、三節影響加速度的因素/探究物體運動與受力的關係

加速度與物體所受合力、物體質量的關係(實驗設計見B書P93)

第四節牛頓第二定律

牛頓第二定律

1.牛頓第二定律:物體的加速度跟所受合外力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同。

2.a=k·F/m(k=1)→F=ma

3.k的數值等於使單位質量的物體產生單位加速度時力的大小。國際單位制中k=1。

4.當物體從某種特徵到另一種特徵時,發生質的飛躍的轉折狀態叫做臨界狀態。

5.極限分析法(預測和處理臨界問題):透過恰當地選取某個變化的物理量將其推向極端,從而把臨界現象暴露出來。

6.牛頓第二定律特性:1)向量性:加速度與合外力任意時刻方向相同

2)瞬時性:加速度與合外力同時產生/變化/消失,力是產生加速度的原因。

3)相對性:a是相對於慣性系的,牛頓第二定律只在慣性系中成立。

4)獨立性:力的獨立作用原理:不同方向的合力產生不同方向的加速度,彼此不受對方影響。

5)同體性:研究物件的統一性。

第五節牛頓第二定律的應用

解題思路:物體的受力情況?牛頓第二定律?a?運動學公式?物體的運動情況

第六節超重與失重

超重和失重

1.物體對支援物的壓力(或對懸掛物的拉力)大於物體所受重力的情況稱為超重現象(視重>物重),物體對支援物的壓力(或對懸掛物的拉力)小於物體所受重力的情況稱為失重現象(物重<視重)。

2.只要豎直方向的a≠0,物體一定處於超重或失重狀態。

3.視重:物體對支援物的壓力或對懸掛物的拉力(儀器稱值)。

4.實重:實際重力(來源於萬有引力)。

5.N=G+ma(設豎直向上為正方向,與v無關)

6.完全失重:一個物體對支援物的壓力(或對懸掛物的拉力)為零,達到失重現象的極限的現象,此時a=g=9.8m/s2。

7.自然界中落體加速度不大於g,人工加速使落體加速度大於g,則落體對上方物體(如果有)產生壓力,或對下方牽繩產生拉力。

第七節力學單位

單位制的意義

1.單位制是由基本單位和匯出單位組成的一系列完整的單位體制。

2.基本單位可任意選定,匯出單位則由定義方程式與比例係數確定的。基本單位選取的不同,組成的單位制也不同。

國際單位制中的力學單位

1.國際單位制(符號~單位):時間(t)~s,長度(l)~m,質量(m)~kg,電流(I)~A,物質的量(n)~mol,熱力學溫度~K,發光強度~cd(坎培拉)

2.1N:使1kg的物體產生單位加速度時力的大小,即1N=1kg·m/s2。

3.常見單位換算:1英尺=12英寸=0.3048m,1英寸=2.540cm,1英里=1.6093km。

`

`

`

附:力學知識點歸納

第一章..定義:力是物體之間的相互作用。

理解要點:

(1) 力具有物質性:力不能離開物體而存在。

說明:①對某一物體而言,可能有一個或多個施力物體。

②並非先有施力物體,後有受力物體

(2)力具有相互性:一個力總是關聯著兩個物體,施力物體同時也是受力物體,受力物體同時也是施力物體。

說明:①相互作用的物體可以直接接觸,也可以不接觸。

②力的大小用測力計測量。

(3)力具有向量性:力不僅有大小,也有方向。

(4)力的作用效果:使物體的形狀發生改變;使物體的運動狀態發生變化。

(5)力的種類:

①根據力的性質命名:如重力、彈力、摩擦力、分子力、電磁力、核力等。

②根據效果命名:如壓力、拉力、動力、阻力、向心力、回覆力等。

說明:根據效果命名的,不同名稱的力,性質可以相同;同一名稱的力,性質可以不同。

重力

定義:由於受到地球的吸引而使物體受到的力叫重力。

說明:①地球附近的物體都受到重力作用。

②重力是由地球的吸引而產生的,但不能說重力就是地球的吸引力。

③重力的施力物體是地球。

④在兩極時重力等於物體所受的萬有引力,在其它位置時不相等。

(1)重力的大小:G=mg

說明:①在地球表面上不同的地方同一物體的重力大小不同的,緯度越高,同一物體的重力越大,因而同一物體在兩極比在赤道重力大。

②一個物體的重力不受運動狀態的影響,與是否還受其它力也無關係。

③在處理物理問題時,一般認為在地球附近的任何地方重力的大小不變。

(2) 重力的方向:豎直向下(即垂直於水平面)

說明:①在兩極與在赤道上的物體,所受重力的方向指向地心。

②重力的方向不受其它作用力的影響,與運動狀態也沒有關係。

(3)重心:物體所受重力的作用點。

重心的確定:①質量分佈均勻。物體的重心只與物體的形狀有關。形狀規則的均勻物體,它的重心就在幾何中心上。

②質量分佈不均勻的物體的重心與物體的形狀、質量分佈有關。

③薄板形物體的重心,可用懸掛法確定。

說明:①物體的重心可在物體上,也可在物體外。

②重心的位置與物體所處的位置及放置狀態和運動狀態無關。

③引入重心概念後,研究具體物體時,就可以把整個物體各部分的重力用作用於重心的一個力來表示,於是原來的物體就可以用一個有質量的點來代替。

彈力

(1) 形變:物體的形狀或體積的改變,叫做形變。

說明:①任何物體都能發生形變,不過有的形變比較明顯,有的形變及其微小。

②彈性形變:撤去外力後能恢復原狀的形變,叫做彈性形變,簡稱形變。

(2)彈力:發生形變的物體由於要恢復原狀對跟它接觸的物體會產生力的作用,這種力叫彈力。

說明:①彈力產生的條件:接觸;彈性形變。

②彈力是一種接觸力,必存在於接觸的物體間,作用點為接觸點。

③彈力必須產生在同時形變的兩物體間。

④彈力與彈性形變同時產生同時消失。

(3)彈力的方向:與作用在物體上使物體發生形變的外力方向相反。

幾種典型的產生彈力的理想模型:

① 輕繩的拉力(張力)方向沿繩收縮的方向。注意杆的不同。

② 點與平面接觸,彈力方向垂直於平面;點與曲面接觸,彈力方向垂直於曲面接觸點所在切面。

③ 平面與平面接觸,彈力方向垂直於平面,且指向受力物體;球面與球面接觸,彈力方向沿兩球球心連線方向,且指向受力物體。

(4)大小:彈簧在彈性限度內遵循胡克定律F=kx,k是勁度係數,表示彈簧本身的一種屬性,k僅與彈簧的材料、粗細、長度有關,而與運動狀態、所處位置無關。其他物體的彈力應根據運動情況,利用平衡條件或運動學規律計算。

摩擦力

(1) 滑動摩擦力:一個物體在另一個物體表面上相當於另一個物體滑動的時候,要受到另一個物體阻礙它相對滑動的力,這種力叫做滑動摩擦力。

說明:①摩擦力的產生是由於物體表面不光滑造成的。

②摩擦力具有相互性。

ⅰ滑動摩擦力的產生條件:A.兩個物體相互接觸;B.兩物體發生形變;C.兩物體發生了相對滑動;D.接觸面不光滑。

ⅱ滑動摩擦力的方向:總跟接觸面相切,並跟物體的相對運動方向相反。

說明:①“與相對運動方向相反”不能等同於“與運動方向相反”

②滑動摩擦力可能起動力作用,也可能起阻力作用。

ⅲ滑動摩擦力的大小:F=μFN

說明:①FN兩物體表面間的壓力,性質上屬於彈力,不是重力。應具體分析。

②μ與接觸面的材料、接觸面的粗糙程度有關,無單位。

③滑動摩擦力大小,與相對運動的速度大小無關。

ⅳ效果:總是阻礙物體間的相對運動,但並不總是阻礙物體的運動。

ⅴ滾動摩擦:一個物體在另一個物體上滾動時產生的摩擦,滾動摩擦比滑動摩擦要小得多。

(2)靜摩擦力:兩相對靜止的相接觸的物體間,由於存在相對運動的趨勢而產生的摩擦力。

說明:靜摩擦力的作用具有相互性。

ⅰ靜摩擦力的產生條件:A.兩物體相接觸;B.相接觸面不光滑;C.兩物體有形變;D.兩物體有相對運動趨勢。

ⅱ靜摩擦力的方向:總跟接觸面相切,並總跟物體的相對運動趨勢相反。

說明:①運動的物體可以受到靜摩擦力的作用。

②靜摩擦力的方向可以與運動方向相同,可以相反,還可以成任一夾角θ。

③靜摩擦力可以是阻力也可以是動力。

ⅲ靜摩擦力的大小:兩物體間的靜摩擦力的取值範圍0<F≤Fm,其中Fm為兩個物體間的最大靜摩擦力。靜摩擦力的大小應根據實際運動情況,利用平衡條件或牛頓運動定律進行計算。

說明:①靜摩擦力是被動力,其作用是與使物體產生運動趨勢的力相平衡,在取值範圍內是根據物體的“需要”取值,所以與正壓力無關。

②最大靜摩擦力大小決定於正壓力與最大靜摩擦因數(選學)Fm=μsFN。

ⅳ效果:總是阻礙物體間的相對運動的趨勢。

對物體進行受力分析是解決力學問題的基礎,是研究力學的重要方法,受力分析的程式是:

1. 根據題意選取適當的研究物件,選取研究物件的原則是要使對物體的研究處理儘量簡便,研究物件可以是單個物體,也可以是幾個物體組成的系統。

2. 把研究物件從周圍的環境中隔離出來,按照先場力,再接觸力的順序對物體進行受力分析,並畫出物體的受力示意圖,這種方法常稱為隔離法。

3. 對物體受力分析時,應注意一下幾點:

(1)不要把研究物件所受的力與它對其它物體的作用力相混淆。

(2)對於作用在物體上的每一個力都必須明確它的來源,不能無中生有。

(3)分析的是物體受哪些“性質力”,不要把“效果力”與“性質力”重複分析。

力的合成

求幾個共點力的合力,叫做力的合成。

(1) 力是向量,其合成與分解都遵循平行四邊形定則。

(2) 一條直線上兩力合成,在規定正方向後,可利用代數運算。

(3) 互成角度共點力互成的分析

①兩個力合力的取值範圍是|F1-F2|≤F≤F1+F2

②共點的三個力,如果任意兩個力的合力最小值小於或等於第三個力,那麼這三個共點力的合力可能等於零。

③同時作用在同一物體上的共點力才能合成(同時性和同體性)。

④合力可能比分力大,也可能比分力小,也可能等於某一個分力。

力的分解

求一個已知力的分力叫做力的分解。

(1) 力的分解是力的`合成的逆運算,同樣遵循平行四邊形定則。

(2) 已知兩分力求合力有唯一解,而求一個力的兩個分力,如不限制條件有無陣列解。

要得到唯一確定的解應附加一些條件:

①已知合力和兩分力的方向,可求得兩分力的大小。

②已知合力和一個分力的大小、方向,可求得另一分力的大小和方向。

③已知合力、一個分力F1的大小與另一分力F2的方向,求F1的方向和F2的大小:

若F1=Fsinθ或F1≥F有一組解

若F>F1>Fsinθ有兩組解

若F<Fsinθ無解

(3) 在實際問題中,一般根據力的作用效果或處理問題的方便需要進行分解。

(4) 力分解的解題思路

力分解問題的關鍵是根據力的作用效果畫出力的平行四邊形,接著就轉化為一個根據已知邊角關係求解的幾何問題。因此其解題思路可表示為:

必須注意:把一個力分解成兩個力,僅是一種等效替代關係,不能認為在這兩個分力方向上有兩個施力物體。

向量與標量

既要由大小,又要由方向來確定的物理量叫向量;

只有大小沒有方向的物理量叫標量

向量由平行四邊形定則運算;標量用代數方法運算。

一條直線上的向量在規定了正方向後,可用正負號表示其方向。

思維昇華——規律·方法·思路

一、物體受力分析的基本思路和方法

物體的受力情況不同,物體可處於不同的運動狀態,要研究物體的運動,必須分析物體的受力情況,正確分析物體的受力情況,是研究力學問題的關鍵,是必須掌握的基本功。

分析物體的受力情況,主要是根據力的概念,從物體的運動狀態及其與周圍物體的接觸情況來考慮。具體的方法是:

1. 確定研究物件,找出所有施力物體

確定所研究的物體,找出周圍對它施力的物體,得出研究物件的受力情況。

(1)如果所研究的物體為A,與A接觸的物體有B、C、D……就應該找出“B對A”、“C對A”、“D對A”、的作用力等,不能把“A對B”、“A對C”等的作用力也作為A的受力;

(2)不能把作用在其它物體上的力,錯誤的認為可透過“力的傳遞”而作用在研究的物件上;

(3) 物體受到的每個力的作用,都要找到施力物體;

(4) 分析出物體的受力情況後,要檢查能否使研究物件處於題目所給出的運動狀態(靜止或加速等),否則會發生多力或漏力現象。

2. 按步驟分析物體受力

為了防止出現多力或漏力現象,分析物體受力情況通常按如下步驟進行:

(1)先分析物體受重力。

(2)其研究物件與周圍物體有接觸,則分析彈力或摩擦力,依次對每個接觸面(點)分析,若有擠壓則有彈力,若還有相對運動或相對運動趨勢,則有摩擦力。

(3)其它外力,如是否有牽引力、電場力、磁場力等。

3. 畫出物體力的示意圖

(1)在作物體受力示意圖時,物體所受的某個力和這個力的分力,不能重複的列為物體的受力,力的合成與分解過程是合力與分力的等效替代過程,合力和分力不能同時認為是物體所受的力。

(2)作物體是力的示意圖時,要用字母代號標出物體所受的每一個力。

二、力的正交分解法

在處理力的合成和分解的複雜問題上的一種簡便的方法:正交分解法。

正交分解法:是把力沿著兩個選定的互相垂直的方向分解,其目的是便於運用普通代數運算公式來解決向量的運算。

力的正交分解法步驟如下:

(1)正確選定直角座標系。通常選共點力的作用點為座標原點,座標軸方向的選擇則應根據實際情況來確定,原則是使座標軸與儘可能多的力重合,即是使需要向兩座標軸分解的力盡可能少。

(2)分別將各個力投影到座標軸上。分別求x軸和y軸上各力的投影合力Fx和Fy,其中:

Fx=F1x+F2x+F3x+…… ;Fy=F1y+F2y+F3y+……

注意:如果F合=0,可推出Fx=0,Fy=0,這是處理多個作用下物體平衡物體的好辦法,以後會常常用到。第2章的...高中物理‘加速度’,一般都是指‘勻加速度’,即,加速度是一個常量

1、加速度a與速度V的關係符合下式:V==at,t為時間變數,

我們有a==V/t

表明,加速度a,就是速度V在單位時間內的平均變化率。

2、V==at是一個直線方程,它相當於數學上的y=kx(V相當於y,t相當於x,a相當於k)

數學知識指出,k是特定直線y=kx的斜率,

直線斜率有如下性質:

(1)不同直線(彼此不平行)的斜率,數值不等

(2)同一直線上斜率的數值,處處相等(與y和x的數值無關)

(3)直線斜率的數值,可以透過y和x的數值來求算:

k==y/x

(4)雖然k==y/x,但是,y==0,x==0,k不為零。

仿此,

(1)不同運動的加速度,數值不等

(2)同一運動的加速度數值,處處相等(與V和t的數值無關)

(3)運動的加速度數值,可以透過V和t的數值來求算:

==V/t

(4)雖然a==V/t,但是V==0(由靜止開始雲動),t==0,但a不為零。

.變加速運動中的物體加速度在減小而速度卻在增大,以及加速度不為零的物體速度大小卻可能不變.(這兩句怎麼理解啊??舉幾個例子?

變加速運動中加速度減小速度當然是增大了,只有加速度的方向與速度方向一致那麼速度就是增加的,與加速度大小沒有關係,例如從一個半圓形軌道上滑下的一個木塊,它沿水平方向的加速度是減小的,但速度是增加的。

加速度在與速度方向在同一條直線上時才改變速度的大小,

有加速度那麼速度就得改變,如果想讓速度大小不變,那麼就得讓它的方向改變,如勻速圓周運動,加速度的大小不變且不為0,速度方向不斷改變但大小不變。

剎車方面應用題:汽車以15米每秒的速度行駛,司機發現前方有危險,在0.8s之後才能作出反應,馬上制動,這個時間稱為反應時間.若汽車剎車時能產生最大加速度為5米每二次方秒,從汽車司機發現前方有危險馬上制動剎車到汽車完全停下來,汽車所透過的距離叫剎車距離.問該汽車的剎車距離為多少?(最好附些過程,謝謝)

15米/秒 加速度是5米/二次方秒 那麼停止需要3秒鐘

3秒透過的路程是s=15*3-1/2*5*3^2=22.5

反應時間是0.8秒 s=0.8*15=12

總的距離就是22.5+12=34.5

原先“直線運動”是放在“力”之後的,在力這一章先講向量及其演算法,然後是利用向量運演算法則學習力的計算。現在倒過來了。建議你還是先學一下這這章內容。

要理解“加速度”,首先要理解“位移”和“速度”概念,位移就是物體運動前後位置的變化,即由開始位置指向結束位置的向量。

速度就是物體位移(物體位置的變化量)與物體運動所用時間的比值,如果物體不是勻速運動(叫變速運動),速度就又有瞬時速度和平均速度之分,平均速度就是作變速運動的物體在某段時間內(或某段位移上),位移與時間的比值;瞬時速度就是物體在某一點或某一時刻的速度。

加速度就是物體速度的變化量與物體速度變化所用時間的比值,如果物體不是勻加速運動(叫變加速運動),加速度就又有瞬時加速度和平均加速度之分,平均加速度就是作變速運動的物體在某段時間內(或某段位移上),速度變化量與時間的比值;瞬時加速度就是物體在某一點或某一時刻的加速度。

對比上面速度與加速度的概念,你就會容易理解一點的。

高一物理必修一知識點總結二

物理網收集和整理了高一物理必修知識點總結,以便考生在高考備考過程中更好的梳理知識,輕鬆備戰。

一、力學的建立

力學的演變以追溯到久遠的年代,而物理學的其它分支,直到近幾個世紀才有了較大的發展,究其原因,是人們對客觀事物的認識規律所決定的。在日常生活和生產勞動中,首先接觸最多的是宏觀物體的運動,其中最簡單。最基本的運動是物體位置的變化,這種運動稱之為機械運動。由此我們注意到,力學建立的原動力就是源於人們對機械運動的研究,亦即力學的研究物件就是機械運動的客觀規律及其應用。瞭解了這些,可以對力學的主脈絡有了一條清晰的線索,就是對於物體運動規律的研究。首先要涉及到物體在空間的位置變化和時間的關係,繼而闡述張力之間的關係,然後從運動和力出發,推廣並建成完整的力學理論。正是要達到上述目的,我們在研究過程中,就需要不斷地引入新的物理概念和方法,此間,由物及理的思維過程和嚴密的邏輯揄體系,逐步得以完善和體現。明確了以上觀點,可以使我們在學習及複習過程,不會生硬地接受。機械地照搬,而是自然流暢地水到渠成。

讓我們走入力學的大門看一看,它的殿堂是怎樣的金碧輝煌。靜力學研究了物體最簡單的狀態:簡單的狀態:靜止或勻速直線運動。並且闡述瞭解決力學問題最基本的方法,如受力情況的分析以及處理方式;力的合成。力的分解和正交分解法。應當認識到,這些方法是貫穿於整個力學的,是我們研究機械運動規律的不可缺少的手段。運動學的主要任務是研究物體的運動,但並不涉及其運動的原因。牛頓運動定律的建立為研究力與運動的關係奠定了雄厚的基礎,即動力學。至此,從理論上講各種運動都可以解決。然而,物體的運動畢竟有複雜的問題出現,諸如碰撞。打擊以及變力作用等等,這類問題根本無法求解。力學大廈的建設者們,從新的角度對物體的運動規律做了全面的。深入的討論,揭示了力與運動之間新的關係。如力對空間的積累-功,力對時間的積累-衝量,進而獲得瞭解決力學問題的另外兩個途徑-功能關係和動量關係,它們與牛頓運動定律一起,在力學中形成三足鼎立之勢。

二、力學概念的引入

前面曾經提到過,力學的研究物件是機械運動的客觀規律及其應用。為達此目的,我們需要不斷地引入許多概念。以運動學部分為例,體會一下力學概念引入的動機及方法,這對力學的複習無疑是大有裨益的。

讓我們研究一下行駛在平直公路上的汽車。首先一個問題就是,怎樣確定汽車在不同時刻的位置。為了能精確地確定汽車的位置,我們可將汽車看作一個點,這樣,質點的概念隨之引入。同時,參照物的引入則是水到渠成的,即在參照物上建立一個直線座標,用一個帶有正負號的數值,即可能精確描述汽車的位置。而後由於汽車位置要不斷地發生變化,位置的改變-位移亦被引入,至於速度的引入在此就不再贅述。在學習物理的過程中,這類問題可以說比比皆是。因此,只有搞清引入某一概念的真正意圖,才能對要研究的問題有深入的瞭解,才能說真正地掌握了一個物理概念。而在物理中,引入概念的方法,充分體現了物理學的研究手段,例如:用比值定義物理量。該方法在整個物理學中具有很典型的意義。

把握一個概念的來龍去脈和準確定義顯然是非常重要的,可以避免一些相似概念的混淆。如功與衝量。動能與動量。加速度與速度等等。所謂學習物理要概念清楚,就是這個含意。

三、力學規律的運用

物理概念的有機組合,構成了美妙的物理定律。因此,清晰的概念是掌握一個定律的重要前提。如牛頓第二定律就是由力。質量及加速度三個量構成的。在力學中重要的定律定理有:牛頓一。二。三定律;機械能守恆定律;動量守恆定律;萬有引力定律;動量定理和動能定理。掌握定律並非以記憶為標準,重要的是會在實際問題中加以運用。如牛頓第二定律,從形式上看來並不複雜,然而很多同學在解決連結體問題時,卻總是把握不好這三個量對研究物件之間的對應關係。在此可舉一例。水平光滑軌道上有一小車,受一恆定水平拉力作用,若在小車上固定一個物體時,小車的加速度要減小是何原因?常見的答案顯然是:合外力不變,質量變大。然而,若回答合外力變小,是不是正確的呢?這裡顯然是由於研究物件的選擇不同而造成的不同結果。在此,研究物件的確定和公式各量的對應性問題,起著關鍵的作用,這也恰恰是牛頓第二定律應用時的重要環節。

運動學規律及動力學關係在解決問題時,也有許多應當注意和思考的地方。如在勻速圓周運動中,我們似乎並未明確指出哪些公式屬於運動學關係,哪些屬於動力學關係,但在實際問題中卻可使人困惑。例如:在一光滑水平面上用繩拴一小球做勻速圓周運動,由公式v=2nr/T可以知道,若增大速率V可以減小週期T.然而衛星繞地球做勻速圓周運動時,我們卻不能用增大V的方式來改變週期T,若僅在V=2nr/Th大做文章定會百思不得其解。究其其原因,還是由於忽略了動力學原因,即前者與後者的最大區別是向心力來源不同。一個是繩子彈力,它可以以r不變時,任意提供了不同大小的拉力;而另一個是萬有引力,當r一定時,其大小也就一定了。在這類問題上,最容易犯的就是片面性的錯誤。再比如機械能守恆和動量守恆這兩條重要的力學定律,我們是否瞭解了守恆的條件,就可以做到靈活地運用呢?我們知道,機械能守恆的條件是隻有重力做功,有些人看到某個問題中,重力沒有做功,就立刻得出機械能不守恆的結論,如光滑水平面上的勻速直線運動。造成這類錯誤的原因是,只注意到了物理定律的文字表述,孰不知深刻理解其內涵才是最重要的。如動量守恆定律的內涵,是在滿足了守恆條件的情況下,即系統不受外力或外力合力為零,動量只是在系統內部傳遞,而總動量不變。

最後談談動能定理和動量定理。觀察其形式可以發現,每個定理都涉及兩個狀態量和一個過程量,注意到這一點應是定理正確應用的關鍵。我們不妨將狀態看作一個點,過程看作一條線,在應用時必然是兩點夾一線,即狀態量及過程量,一定要對應,這也是兩個定理的相似之處,至於它們的區別,在此就不多講了。

由以上的討論可以看出,對物理定律的應用,絕不能只滿足於會用,而應當多方面地體會其深層的含意和適用條件中所包含的物理意義。只有這樣,才能達到靈活運用物理規律解題的目的,做到居高臨下,以不變應萬變。

四、邏輯推理在物理中的運用

邏輯推理在力學中可以說俯拾皆是。嚴密的邏輯推理,是正確運用物理規律解決問題的必由之路。試舉一例:做曲線運動的物體一定受合外力,其邏輯推理過程如下:曲線運動的速度方向沿軌跡的切線方向,而曲線切線方向每點是不同的,因此曲線運動的速度方向一定是不斷變化的。由於的向量,所以曲線運動必為變速運動,必然有加速度,由牛頓第二定律可知其必受合外力。當然,實際問題中似乎並非如此繁瑣,然而細細地想來又的如此,只是思維過程較為迅速罷了。再舉一例:合外力對物體做功不為零,則物體的動量一定發生變化,而物體的動量變化,合外力對物體不一定做功。此命題依然可用邏輯推理說明其正確性。根據動能定理,當合外力做功時,則物體的動能必然發生變化,因此速率發生變化,則動量必然變化。反之支量發生變化,動能不一定變(動量是向量,動能是標量),則合外力不一定做功。不難看出,清晰地認識概念,牢固地掌握規律,者嚴密正確的邏輯推理得以完成的重要前提和充足的條件補充。同學們若多留意。多用心,定會受益非淺。